Dqn/Code/Dqn.h
2021-07-29 17:36:01 +10:00

7198 lines
259 KiB
C++

// -----------------------------------------------------------------------------
// NOTE: Dqn
// -----------------------------------------------------------------------------
// General all-purpose utility library.
//
// -----------------------------------------------------------------------------
// NOTE: Configuration
// -----------------------------------------------------------------------------
// #define DQN_IMPLEMENTATION
// Define this in one and only one C++ file to enable the implementation
// code of the header file
//
// #define DQN_NO_ASSERT
// Turn all assertion macros to no-ops
//
// #define DQN_NO_WIN32_MINIMAL_HEADER
// Define this to stop this library from defining a minimal subset of Win32
// prototypes and definitions in this file. Useful for stopping redefinition
// of symbols if another library includes "Windows.h"
//
// #define DQN_NO_WIN32_SHLWAPI_H
// See DQN_NO_WIN32_MINIMAL_HEADER. Useful if another library includes
// "shlwapi.h"
//
// #define DQN_STATIC_API
// Apply static to all function definitions and disable external linkage to
// other translation units.
//
// #define DQN_STB_SPRINTF_HEADER_ONLY
// Define this to stop this library from defining
// STB_SPRINTF_IMPLEMENTATION. Useful if another library uses and includes
// "stb_sprintf.h"
//
// #define DQN_MEMZERO_DEBUG_BYTE 0xDA
// By defining 'DQN_MEMZERO_DEBUG_BYTE' to some byte value this will enable
// functions that receive Dqn_ZeroMem::No to memset the non-zeroed memory to
// 'DQN_MEMZERO_DEBUG_BYTE' to help detect holding pointers to invalid memory,
// i.e. holding pointers to an array element that was popped from the array.
//
// #define DQN_ALLOCATION_TRACING 1
// When defined to 0 all tracing code is compiled out.
//
// When defined to 1, some allocating calls in the library will automatically
// get passed in the file name, function name, line number and an optional tag.
//
// For data structures that have a 'Dqn_AllocationTracer' member, the caller
// can set the 'Dqn_AllocationTracer' to log allocations every time they are
// made in the data structure.
//
// 'Tagged' variants of functions accept as the last parameter, a 'tag' that is
// the descriptor/name to describe the allocation. All extra parameters and
// tags are compiled out when tracing is disabled.
//
// -------------------------------------------------------------------------------------------------
// NOTE: Library Config
// -------------------------------------------------------------------------------------------------
/*
Dqn library logs errors and outputs through Dqn_Log(...). This is
customisable by updating the function ptr the logging routine is called
through. Currently it is set in the global variable 'dqn_log'.
void MyCustomLogger(Dqn_LogType type, void *user_data, char const *file, Dqn_usize file_len, char const *func, Dqn_usize func_len, Dqn_usize line, char const *fmt, va_list va)
{
(void)user_data;
// Trim Filename
char const *file_ptr = file;
auto file_ptr_len = DQN_CAST(Dqn_isize)file_len;
for (Dqn_isize i = (file_ptr_len - 1); i >= 0; --i)
{
if (file_ptr[i] == '\\' || file_ptr[i] == '/')
{
char const *file_end = file_ptr + file_ptr_len;
file_ptr = file_ptr + (i + 1);
file_ptr_len = static_cast<int>(file_end - file_ptr);
break;
}
}
// Print
FILE *handle = (type == Dqn_LogType::Error) ? stderr : stdout;
fprintf(handle,
"%s %.*s %05I64u %.*s ",
Dqn_LogTypeString[DQN_CAST(int) type],
(int)file_ptr_len,
file_ptr,
line,
(int)func_len,
func
);
vfprintf(handle, fmt, va);
fputc('\n', handle);
}
Dqn_Log_SetCallback(MyCustomLogger, nullptr);
*/
#if !defined(DQN_H)
#define DQN_H
// -------------------------------------------------------------------------------------------------
// NOTE: Compiler
// -------------------------------------------------------------------------------------------------
// NOTE: Warning! Order is important here, clang-cl on Windows defines _MSC_VER
#if defined(_MSC_VER)
#if defined(__clang__)
#define DQN_COMPILER_W32_CLANG
#else
#define DQN_COMPILER_W32_MSVC
#pragma warning(push)
#pragma warning(disable: 4201) // warning C4201: nonstandard extension used: nameless struct/union
#endif
#elif defined(__clang__)
#define DQN_COMPILER_CLANG
#elif defined(__GNUC__)
#define DQN_COMPILER_GCC
#endif
#if defined(_WIN32)
#define DQN_OS_WIN32
#endif
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
#if defined(_CRT_SECURE_NO_WARNINGS)
#define DQN_CRT_SECURE_NO_WARNINGS_PREVIOUSLY_DEFINED
#else
#define _CRT_SECURE_NO_WARNINGS
#endif
#endif
#include <stdarg.h> // va_list
// -------------------------------------------------------------------------------------------------
// NOTE: Overridable Macros
// -------------------------------------------------------------------------------------------------
#if !defined(DQN_CALLOC)
#include <stdlib.h>
#define DQN_CALLOC(count, size) calloc(count, size)
#endif
#if !defined(DQN_MALLOC)
#include <stdlib.h>
#define DQN_MALLOC(size) malloc(size)
#endif
#if !defined(DQN_REALLOC)
#include <stdlib.h>
#define DQN_REALLOC(ptr, size) realloc(ptr, size)
#endif
#if !defined(DQN_FREE)
#include <stdlib.h>
#define DQN_FREE(ptr) free(ptr)
#endif
#if !defined(DQN_MEMCOPY)
#include <string.h>
#define DQN_MEMCOPY(dest, src, count) memcpy(dest, src, count)
#endif
#if !defined(DQN_MEMSET)
#include <string.h>
#define DQN_MEMSET(dest, value, count) memset(dest, value, count)
#endif
#if !defined(DQN_MEMCMP)
#include <string.h>
#define DQN_MEMCMP(ptr1, ptr2, num) memcmp(ptr1, ptr2, num)
#endif
#if !defined(DQN_SQRTF)
#include <math.h>
#define DQN_SQRTF(val) sqrtf(val)
#endif
// -------------------------------------------------------------------------------------------------
// NOTE: Utility Macros
// -------------------------------------------------------------------------------------------------
#define DQN_CAST(val) (val)
#define DQN_SWAP(a, b) \
do \
{ \
auto tmp = a; \
a = b; \
b = tmp; \
} while (0)
#define DQN_LEN_AND_STR(string) Dqn_CharCount(str), string
#define DQN_STR_AND_LEN(string) string, Dqn_CharCount(string)
#define DQN_STR_AND_LEN_I(string) string, (int)Dqn_CharCount(string)
#define DQN_FOR_EACH(i, limit) for (Dqn_isize i = 0; i < (Dqn_isize)(limit); ++i)
#define DQN_BYTES(val) (val)
#define DQN_KILOBYTES(val) (1024ULL * DQN_BYTES(val))
#define DQN_MEGABYTES(val) (1024ULL * DQN_KILOBYTES(val))
#define DQN_GIGABYTES(val) (1024ULL * DQN_MEGABYTES(val))
#define DQN_MINS_TO_S(val) ((val) * 60ULL)
#define DQN_HOURS_TO_S(val) (DQN_MINS_TO_S(val) * 60ULL)
#define DQN_DAYS_TO_S(val) (DQN_HOURS_TO_S(val) * 24ULL)
#define DQN_YEARS_TO_S(val) (DQN_DAYS_TO_S(val) * 365ULL)
#define DQN_ISIZEOF(val) DQN_CAST(ptrdiff_t)sizeof(val)
#if !defined(DQN_DEBUG_BREAK)
#if defined(NDEBUG)
#define DQN_DEBUG_BREAK
#else
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
#define DQN_DEBUG_BREAK __debugbreak()
#elif defined(DQN_COMPILER_CLANG) || defined(DQN_COMPILER_GCC)
#include <signal.h>
#define DQN_DEBUG_BREAK raise(SIGTRAP)
#elif
#error "Unhandled compiler"
#endif
#endif
#endif
#define DQN_SECONDS_TO_MS(val) ((val) * 1000.0f)
#if defined(DQN_STATIC_API)
#define DQN_API static
#else
#define DQN_API
#endif
#define DQN_LOCAL_PERSIST static
#define DQN_FILE_SCOPE static
// -------------------------------------------------------------------------------------------------
// NOTE: Overridable Math Macros
// ------------------------------------------------------------------------------------------------
#ifndef DQN_M_SINF
#include <math.h>
#define DQN_M_SINF(val) sinf(val)
#endif // DQN_M_SINF
#ifndef DQN_M_COSF
#include <math.h>
#define DQN_M_COSF(val) cosf(val)
#endif // DQN_M_COSF
#ifndef DQN_M_TANF
#include <math.h>
#define DQN_M_TANF(val) tanf(val)
#endif // DQN_M_TANF
// -------------------------------------------------------------------------------------------------
// NOTE: Math Macros
// ------------------------------------------------------------------------------------------------
#define DQN_M_PI 3.14159265359f
#define DQN_M_DEGREE_TO_RADIAN(degrees) ((degrees) * (DQN_M_PI / 180.0f))
#define DQN_M_RADIAN_TO_DEGREE(radians) ((radians) * (180.f * DQN_M_PI))
#define DQN_M_ABS(val) (((val) < 0) ? (-(val)) : (val))
#define DQN_M_MAX(a, b) ((a > b) ? (a) : (b))
#define DQN_M_MIN(a, b) ((a < b) ? (a) : (b))
#define DQN_M_SQUARED(val) ((val) * (val))
// -------------------------------------------------------------------------------------------------
// NOTE: Assert Macro
// ------------------------------------------------------------------------------------------------
#define DQN_HARD_ASSERT(expr) DQN_HARD_ASSERT_MSG(expr, "")
#define DQN_HARD_ASSERT_MSG(expr, fmt, ...) \
if (!(expr)) \
{ \
DQN_LOG_E("Assert: [" #expr "] " fmt, ##__VA_ARGS__); \
DQN_DEBUG_BREAK; \
}
#if defined(DQN_NO_ASSERT)
#define DQN_ASSERT(expr)
#define DQN_ASSERT_MSG(expr, fmt, ...)
#else
#define DQN_ASSERT(expr) DQN_HARD_ASSERT_MSG(expr, "")
#define DQN_ASSERT_MSG(expr, fmt, ...) DQN_HARD_ASSERT_MSG(expr, fmt, ##__VA_ARGS__)
#endif
#define DQN_INVALID_CODE_PATH DQN_ASSERT(0)
#define DQN_HARD_INVALID_CODE_PATH DQN_HARD_ASSERT(0 && "Invalid Code Path")
// ------------------------------------------------------------------------------------------------
// NOTE: Typedefs
// ------------------------------------------------------------------------------------------------
// Use compiler builtins and define our own constants to avoid a dependency on stdint.h
using Dqn_f64 = double;
using Dqn_f32 = float;
using Dqn_i8 = signed char;
using Dqn_u8 = unsigned char;
using Dqn_i16 = signed short;
using Dqn_u16 = unsigned short;
using Dqn_i32 = signed int;
using Dqn_u32 = unsigned int;
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
using Dqn_i64 = signed __int64;
using Dqn_u64 = unsigned __int64;
#else
using Dqn_i64 = signed long long;
using Dqn_u64 = unsigned long long;
#endif
using Dqn_b32 = Dqn_i32;
using Dqn_b8 = Dqn_i8;
#if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64)
using Dqn_uintptr = Dqn_u64;
using Dqn_intptr = Dqn_i64;
using Dqn_usize = Dqn_u64;
using Dqn_isize = Dqn_i64;
#else
using Dqn_uintptr = Dqn_u32;
using Dqn_intptr = Dqn_i32;
using Dqn_usize = Dqn_u32;
using Dqn_isize = Dqn_i32;
#endif
Dqn_f32 const DQN_F32_MAX = 3.402823466e+38F;
Dqn_f64 const DQN_F64_MAX = 1.7976931348623158e+308;
Dqn_i8 const DQN_I8_MAX = 127;
Dqn_i8 const DQN_I8_MIN = -DQN_I8_MAX - 1;
Dqn_i16 const DQN_I16_MAX = 32767;
Dqn_i16 const DQN_I16_MIN = -DQN_I16_MAX - 1;
Dqn_i32 const DQN_I32_MAX = 2147483647;
Dqn_i32 const DQN_I32_MIN = -DQN_I32_MAX - 1;
Dqn_i64 const DQN_I64_MAX = 9223372036854775807;
Dqn_i64 const DQN_I64_MIN = -DQN_I64_MAX - 1;
Dqn_u8 const DQN_U8_MAX = 255;
Dqn_u16 const DQN_U16_MAX = 65535;
Dqn_u32 const DQN_U32_MAX = 4294967295;
Dqn_u64 const DQN_U64_MAX = 18446744073709551615ULL;
#if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64)
using Dqn_usize = Dqn_u64;
using Dqn_isize = Dqn_i64;
Dqn_isize const DQN_ISIZE_MAX = DQN_I64_MAX;
Dqn_usize const DQN_USIZE_MAX = DQN_U64_MAX;
#else
using Dqn_usize = Dqn_u32;
using Dqn_isize = Dqn_i32;
Dqn_isize const DQN_ISIZE_MAX = DQN_I32_MAX;
Dqn_usize const DQN_USIZE_MAX = DQN_U32_MAX;
#endif
static_assert(sizeof(int) == sizeof(Dqn_i32), "Sanity check int typedef is correct");
static_assert(sizeof(Dqn_u64) == 8, "Sanity check Dqn_u64 typedef is correct");
static_assert(sizeof(void *) == sizeof(Dqn_usize), "Require: Pointer can be held in usize (size_t)");
// ------------------------------------------------------------------------------------------------
// NOTE: Win32 Minimal Header
// ------------------------------------------------------------------------------------------------
#if defined(DQN_OS_WIN32)
#if !defined(DQN_NO_WIN32_MINIMAL_HEADER)
// Taken from Windows.h
typedef unsigned long DWORD;
typedef unsigned short WORD;
typedef union {
struct {
DWORD LowPart;
long HighPart;
};
struct {
DWORD LowPart;
long HighPart;
} u;
Dqn_i64 QuadPart;
} LARGE_INTEGER;
#endif // !defined(DQN_NO_WIN32_MINIMAL_HEADER)
#endif // !defined(DQN_OS_WIN32)
// ------------------------------------------------------------------------------------------------
// NOTE: Compile Time Utilities
// ------------------------------------------------------------------------------------------------
template <typename T, Dqn_isize N> constexpr Dqn_usize Dqn_ArrayCount (T const (&)[N]) { return N; }
template <typename T, Dqn_isize N> constexpr Dqn_isize Dqn_ArrayCountI(T const (&)[N]) { return N; }
template <Dqn_isize N> constexpr Dqn_usize Dqn_CharCount (char const (&)[N]) { return N - 1; }
template <Dqn_isize N> constexpr Dqn_isize Dqn_CharCountI (char const (&)[N]) { return N - 1; }
// ------------------------------------------------------------------------------------------------
// NOTE: Defer Macro
// ------------------------------------------------------------------------------------------------
/*
#include <stdio.h>
int main()
{
DQN_DEFER { printf("Three ..\n"); };
printf("One ..\n");
printf("Two ..\n");
// One ..
// Two ..
// Three ..
return 0;
}
*/
template <typename Procedure>
struct Dqn_Defer
{
Procedure proc;
Dqn_Defer(Procedure p) : proc(p) {}
~Dqn_Defer() { proc(); }
};
struct Dqn_DeferHelper
{
template <typename Lambda>
Dqn_Defer<Lambda> operator+(Lambda lambda) { return Dqn_Defer<Lambda>(lambda); };
};
#define DQN_TOKEN_COMBINE2(x, y) x ## y
#define DQN_TOKEN_COMBINE(x, y) DQN_TOKEN_COMBINE2(x, y)
#define DQN_UNIQUE_NAME(prefix) DQN_TOKEN_COMBINE(prefix, __LINE__)
#define DQN_DEFER const auto DQN_UNIQUE_NAME(defer_lambda_) = Dqn_DeferHelper() + [&]()
// ------------------------------------------------------------------------------------------------
// NOTE: Utility Enums
// ------------------------------------------------------------------------------------------------
enum struct Dqn_ZeroMem { No, Yes };
// Internal helper function that zeroes memory or memsets memory to
// DQN_MEMZERO_DEBUG_BYTE if zero_mem is Dqn_ZeroMem::No.
DQN_API void Dqn__ZeroMemBytes(void *ptr, Dqn_usize count, Dqn_ZeroMem zero_mem);
// -------------------------------------------------------------------------------------------------
// NOTE: Intrinsics
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_AtomicAdd/Exchange return the previous value store in the target
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
#include <intrin.h>
#define Dqn_AtomicAddU32(target, value) _InterlockedExchangeAdd(DQN_CAST(long volatile *)target, value)
#define Dqn_AtomicAddU64(target, value) _InterlockedExchangeAdd64(DQN_CAST(__int64 volatile *)target, value)
#define Dqn_AtomicSubU32(target, value) DQN_CAST(unsigned)Dqn_AtomicAddU32(DQN_CAST(long volatile *)target, -DQN_CAST(long)value)
#define Dqn_AtomicSubU64(target, value) DQN_CAST(Dqn_u64)Dqn_AtomicAddU64(target, -DQN_CAST(Dqn_i64)value)
#define Dqn_AtomicCompareExchange64(dest, desired_val, prev_val) _InterlockedCompareExchange64(DQN_CAST(__int64 volatile *)dest, desired_val, prev_val)
#define Dqn_AtomicCompareExchange32(dest, desired_val, prev_val) _InterlockedCompareExchange(DQN_CAST(long volatile *)dest, desired_val, prev_val)
#define Dqn_CPUClockCycle() __rdtsc()
#define Dqn_CompilerReadBarrierAndCPUReadFence _ReadBarrier(); _mm_lfence()
#define Dqn_CompilerWriteBarrierAndCPUWriteFence _WriteBarrier(); _mm_sfence()
#elif defined(DQN_COMPILER_GCC) || defined(DQN_COMPILER_CLANG)
#include <x86intrin.h>
#define Dqn_AtomicAddU32(target, value) __atomic_fetch_add(target, value, __ATOMIC_ACQ_REL)
#define Dqn_AtomicAddU64(target, value) __atomic_fetch_add(target, value, __ATOMIC_ACQ_REL)
#define Dqn_AtomicSubU32(target, value) __atomic_fetch_sub(target, value, __ATOMIC_ACQ_REL)
#define Dqn_AtomicSubU64(target, value) __atomic_fetch_sub(target, value, __ATOMIC_ACQ_REL)
#if defined(DQN_COMPILER_GCC)
#define Dqn_CPUClockCycle() __rdtsc()
#else
#define Dqn_CPUClockCycle() __builtin_readcyclecounter()
#endif
#define Dqn_CompilerReadBarrierAndCPUReadFence asm volatile("lfence" ::: "memory")
#define Dqn_CompilerWriteBarrierAndCPUWriteFence asm volatile("sfence" ::: "memory")
#else
#error "Compiler not supported"
#endif
// TODO(dqn): Force inline
inline Dqn_i64 Dqn_AtomicSetValue64(Dqn_i64 volatile *target, Dqn_i64 value)
{
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
Dqn_i64 result;
do
{
result = *target;
} while (Dqn_AtomicCompareExchange64(target, value, result) != result);
return result;
#elif defined(DQN_COMPILER_GCC) || defined(DQN_COMPILER_CLANG)
Dqn_i64 result = __sync_lock_test_and_set(target, value);
return result;
#else
#error Unsupported compiler
#endif
}
inline long Dqn_AtomicSetValue32(long volatile *target, long value)
{
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
long result;
do
{
result = *target;
} while (Dqn_AtomicCompareExchange32(target, value, result) != result);
return result;
#elif defined(DQN_COMPILER_GCC) || defined(DQN_COMPILER_CLANG)
long result = __sync_lock_test_and_set(target, value);
return result;
#else
#error Unsupported compiler
#endif
}
struct Dqn_CPUIDRegisters
{
unsigned int array[4]; // eax, ebx, ecx, edx
};
struct Dqn_TicketMutex
{
unsigned int volatile ticket; // The next ticket ID to give out to the thread taking the mutex
unsigned int volatile serving; // The ticket ID that the mutex will block until it receives
};
// Query the CPU's CPUID function and return the data in the registers
Dqn_CPUIDRegisters Dqn_CPUID (int function_id);
void Dqn_TicketMutex_Begin (Dqn_TicketMutex *mutex);
void Dqn_TicketMutex_End (Dqn_TicketMutex *mutex);
// NOTE: Advance API, more granular functions, the basic sequence to use the API is
/*
Dqn_TicketMutex mutex = {};
unsigned int ticket = Dqn_TicketMutex_MakeTicket(&mutex);
Dqn_TicketMutex_BeginTicket(&mutex, ticket); // Blocking call until we attain the lock
Dqn_TicketMutex_End(&mutex);
*/
unsigned int Dqn_TicketMutex_MakeTicket (Dqn_TicketMutex *mutex);
void Dqn_TicketMutex_BeginTicket (const Dqn_TicketMutex *mutex, unsigned int ticket);
Dqn_b32 Dqn_TicketMutex_CanLock (const Dqn_TicketMutex *mutex, unsigned int ticket);
// -------------------------------------------------------------------------------------------------
// NOTE: stb_sprintf
// -------------------------------------------------------------------------------------------------
// stb_sprintf - v1.10 - public domain snprintf() implementation
// originally by Jeff Roberts / RAD Game Tools, 2015/10/20
// http://github.com/nothings/stb
//
// allowed types: sc uidBboXx p AaGgEef n
// lengths : hh h ll j z t I64 I32 I
//
// Contributors:
// Fabian "ryg" Giesen (reformatting)
// github:aganm (attribute format)
//
// Contributors (bugfixes):
// github:d26435
// github:trex78
// github:account-login
// Jari Komppa (SI suffixes)
// Rohit Nirmal
// Marcin Wojdyr
// Leonard Ritter
// Stefano Zanotti
// Adam Allison
// Arvid Gerstmann
// Markus Kolb
//
// LICENSE:
//
// See end of file for license information.
#ifndef STB_SPRINTF_H_INCLUDE
#define STB_SPRINTF_H_INCLUDE
/*
Single file sprintf replacement.
Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20.
Hereby placed in public domain.
This is a full sprintf replacement that supports everything that
the C runtime sprintfs support, including float/double, 64-bit integers,
hex floats, field parameters (%*.*d stuff), length reads backs, etc.
Why would you need this if sprintf already exists? Well, first off,
it's *much* faster (see below). It's also much smaller than the CRT
versions code-space-wise. We've also added some simple improvements
that are super handy (commas in thousands, callbacks at buffer full,
for example). Finally, the format strings for MSVC and GCC differ
for 64-bit integers (among other small things), so this lets you use
the same format strings in cross platform code.
It uses the standard single file trick of being both the header file
and the source itself. If you just include it normally, you just get
the header file function definitions. To get the code, you include
it from a C or C++ file and define STB_SPRINTF_IMPLEMENTATION first.
It only uses va_args macros from the C runtime to do it's work. It
does cast doubles to S64s and shifts and divides U64s, which does
drag in CRT code on most platforms.
It compiles to roughly 8K with float support, and 4K without.
As a comparison, when using MSVC static libs, calling sprintf drags
in 16K.
API:
====
int stbsp_sprintf( char * buf, char const * fmt, ... )
int stbsp_snprintf( char * buf, int count, char const * fmt, ... )
Convert an arg list into a buffer. stbsp_snprintf always returns
a zero-terminated string (unlike regular snprintf).
int stbsp_vsprintf( char * buf, char const * fmt, va_list va )
int stbsp_vsnprintf( char * buf, int count, char const * fmt, va_list va )
Convert a va_list arg list into a buffer. stbsp_vsnprintf always returns
a zero-terminated string (unlike regular snprintf).
int stbsp_vsprintfcb( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va )
typedef char * STBSP_SPRINTFCB( char const * buf, void * user, int len );
Convert into a buffer, calling back every STB_SPRINTF_MIN chars.
Your callback can then copy the chars out, print them or whatever.
This function is actually the workhorse for everything else.
The buffer you pass in must hold at least STB_SPRINTF_MIN characters.
// you return the next buffer to use or 0 to stop converting
void stbsp_set_separators( char comma, char period )
Set the comma and period characters to use.
FLOATS/DOUBLES:
===============
This code uses a internal float->ascii conversion method that uses
doubles with error correction (double-doubles, for ~105 bits of
precision). This conversion is round-trip perfect - that is, an atof
of the values output here will give you the bit-exact double back.
One difference is that our insignificant digits will be different than
with MSVC or GCC (but they don't match each other either). We also
don't attempt to find the minimum length matching float (pre-MSVC15
doesn't either).
If you don't need float or doubles at all, define STB_SPRINTF_NOFLOAT
and you'll save 4K of code space.
64-BIT INTS:
============
This library also supports 64-bit integers and you can use MSVC style or
GCC style indicators (%I64d or %lld). It supports the C99 specifiers
for size_t and ptr_diff_t (%jd %zd) as well.
EXTRAS:
=======
Like some GCCs, for integers and floats, you can use a ' (single quote)
specifier and commas will be inserted on the thousands: "%'d" on 12345
would print 12,345.
For integers and floats, you can use a "$" specifier and the number
will be converted to float and then divided to get kilo, mega, giga or
tera and then printed, so "%$d" 1000 is "1.0 k", "%$.2d" 2536000 is
"2.53 M", etc. For byte values, use two $:s, like "%$$d" to turn
2536000 to "2.42 Mi". If you prefer JEDEC suffixes to SI ones, use three
$:s: "%$$$d" -> "2.42 M". To remove the space between the number and the
suffix, add "_" specifier: "%_$d" -> "2.53M".
In addition to octal and hexadecimal conversions, you can print
integers in binary: "%b" for 256 would print 100.
PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC):
===================================================================
"%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC)
"%24d" across all 32-bit ints (4.5x/4.2x faster)
"%x" across all 32-bit ints (4.5x/3.8x faster)
"%08x" across all 32-bit ints (4.3x/3.8x faster)
"%f" across e-10 to e+10 floats (7.3x/6.0x faster)
"%e" across e-10 to e+10 floats (8.1x/6.0x faster)
"%g" across e-10 to e+10 floats (10.0x/7.1x faster)
"%f" for values near e-300 (7.9x/6.5x faster)
"%f" for values near e+300 (10.0x/9.1x faster)
"%e" for values near e-300 (10.1x/7.0x faster)
"%e" for values near e+300 (9.2x/6.0x faster)
"%.320f" for values near e-300 (12.6x/11.2x faster)
"%a" for random values (8.6x/4.3x faster)
"%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster)
"%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster)
"%s%s%s" for 64 char strings (7.1x/7.3x faster)
"...512 char string..." ( 35.0x/32.5x faster!)
*/
#if defined(__clang__)
#if defined(__has_feature) && defined(__has_attribute)
#if __has_feature(address_sanitizer)
#if __has_attribute(__no_sanitize__)
#define STBSP__ASAN __attribute__((__no_sanitize__("address")))
#elif __has_attribute(__no_sanitize_address__)
#define STBSP__ASAN __attribute__((__no_sanitize_address__))
#elif __has_attribute(__no_address_safety_analysis__)
#define STBSP__ASAN __attribute__((__no_address_safety_analysis__))
#endif
#endif
#endif
#elif defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#if defined(__SANITIZE_ADDRESS__) && __SANITIZE_ADDRESS__
#define STBSP__ASAN __attribute__((__no_sanitize_address__))
#endif
#endif
#ifndef STBSP__ASAN
#define STBSP__ASAN
#endif
#ifdef STB_SPRINTF_STATIC
#define STBSP__PUBLICDEC static
#define STBSP__PUBLICDEF static STBSP__ASAN
#else
#ifdef __cplusplus
#define STBSP__PUBLICDEC extern "C"
#define STBSP__PUBLICDEF extern "C" STBSP__ASAN
#else
#define STBSP__PUBLICDEC extern
#define STBSP__PUBLICDEF STBSP__ASAN
#endif
#endif
#if defined(__has_attribute)
#if __has_attribute(format)
#define STBSP__ATTRIBUTE_FORMAT(fmt,va) __attribute__((format(printf,fmt,va)))
#endif
#endif
#ifndef STBSP__ATTRIBUTE_FORMAT
#define STBSP__ATTRIBUTE_FORMAT(fmt,va)
#endif
#ifdef _MSC_VER
#define STBSP__NOTUSED(v) (void)(v)
#else
#define STBSP__NOTUSED(v) (void)sizeof(v)
#endif
#include <stdarg.h> // for va_arg(), va_list()
#include <stddef.h> // size_t, ptrdiff_t
#ifndef STB_SPRINTF_MIN
#define STB_SPRINTF_MIN 512 // how many characters per callback
#endif
typedef char *STBSP_SPRINTFCB(const char *buf, void *user, int len);
#ifndef STB_SPRINTF_DECORATE
#define STB_SPRINTF_DECORATE(name) stbsp_##name // define this before including if you want to change the names
#endif
STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va);
STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsnprintf)(char *buf, int count, char const *fmt, va_list va);
STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(2,3);
STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(3,4);
STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va);
STBSP__PUBLICDEC void STB_SPRINTF_DECORATE(set_separators)(char comma, char period);
#endif // STB_SPRINTF_H_INCLUDE
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Fmt
// -------------------------------------------------------------------------------------------------
// Utility functions for calculating the size of format strings. Uses stb_sprintf internally.
// return: The length of the format string without a null terminating byte, i.e. "hi" = 2
DQN_API Dqn_isize Dqn_FmtVLenNoNullTerminator(char const *fmt, va_list args);
DQN_API Dqn_isize Dqn_FmtLenNoNullTerminator (char const *fmt, ...);
// return: The length including 1 byte for the null terminating byte, i.e. "hi" = 3
DQN_API Dqn_isize Dqn_FmtVLen (char const *fmt, va_list args);
DQN_API Dqn_isize Dqn_FmtLen (char const *fmt, ...);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Log
// -------------------------------------------------------------------------------------------------
#define X_MACRO \
X_ENTRY(Debug, "DBUG") \
X_ENTRY(Error, "ERR ") \
X_ENTRY(Warning, "WARN") \
X_ENTRY(Info, "INFO") \
X_ENTRY(Profile, "PROF") \
X_ENTRY(Memory, "MEM ")
enum struct Dqn_LogType
{
#define X_ENTRY(enum_val, string) enum_val,
X_MACRO
#undef X_ENTRY
};
char const *Dqn_LogTypeString[] = {
#define X_ENTRY(enum_val, string) string,
X_MACRO
#undef X_ENTRY
};
#undef X_MACRO
// Internal global variables for tracking the current logging function
typedef void Dqn_LogProc(Dqn_LogType type, void *user_data, char const *file, Dqn_usize file_len, char const *func, Dqn_usize func_len, Dqn_usize line, char const *fmt, ...);
// ------------------------------------------------------------------------------------------------
// NOTE: Logging Macros
// ------------------------------------------------------------------------------------------------
// Macro logging functions, prefer this is you want to log messages
#define DQN_LOG_E(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Error, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG_D(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Debug, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG_W(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Warning, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG_I(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Info, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG_M(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Memory, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG_P(fmt, ...) dqn__lib.LogCallback(Dqn_LogType::Profile, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
#define DQN_LOG(log_type, fmt, ...) dqn__lib.LogCallback(log_type, dqn__lib.log_user_data, DQN_STR_AND_LEN(__FILE__), DQN_STR_AND_LEN(__func__), __LINE__, fmt, ## __VA_ARGS__)
// Update the default logging function, all logging functions will run through this callback
// proc: The new logging function, set to nullptr to revert back to the default logger.
// user_data: A user defined parameter to pass to the callback
DQN_API void Dqn_Log_SetCallback (Dqn_LogProc *proc, void *user_data);
// Internal logging functions, prefer the logging macros above
DQN_API void Dqn_LogV (Dqn_LogType type, void *user_data, char const *file, Dqn_usize file_len, char const *func, Dqn_usize func_len, Dqn_usize line, char const *fmt, va_list va);
DQN_API void Dqn_Log (Dqn_LogType type, void *user_data, char const *file, Dqn_usize file_len, char const *func, Dqn_usize func_len, Dqn_usize line, char const *fmt, ...);
// ------------------------------------------------------------------------------------------------
// NOTE: Library variables
// ------------------------------------------------------------------------------------------------
struct Dqn_Lib
{
Dqn_LogProc *LogCallback = Dqn_Log;
void * log_user_data;
#if defined(DQN_OS_WIN32)
LARGE_INTEGER win32_qpc_frequency;
#endif
};
extern Dqn_Lib dqn__lib;
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Align
// -------------------------------------------------------------------------------------------------
// 'AlignAddressEnsuringSpace" aligns even if pointer is aligned, align it again, ensuring there's
// at minimum 1 byte and at most 'alignment' bytes of space between the aligned pointer and raw
// pointer. We do this to keep metadata exactly 1 byte behind the aligned pointer.
// 'AlignAddress' is the same as above except it's a no-op if the address is already aligned.
DQN_API Dqn_uintptr Dqn_AlignAddressEnsuringSpace(Dqn_uintptr address, Dqn_u8 alignment);
DQN_API Dqn_uintptr Dqn_AlignAddress (Dqn_uintptr address, Dqn_u8 alignment);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_PointerMetadata
// -------------------------------------------------------------------------------------------------
// Store data about a memory allocated pointer. Only used for the generic heap allocator.
struct Dqn_PointerMetadata
{
Dqn_i64 size; // The size of the user allocation not including the metadata
Dqn_u8 alignment; // The alignment of the user allocation
Dqn_u8 offset; // Subtract offset from aligned ptr to return to the allocation ptr
};
// Given an user allocation, compute the total space required which includes space for the metadata
// size: The size requested by the user
// alignment: The alignment requested by the user
DQN_API Dqn_isize Dqn_PointerMetadata_SizeRequired (Dqn_isize size, Dqn_u8 alignment);
// ptr: The pointer to write the metadata into
// size: The size as calculated from 'PointerMetadata_SizeRequired'
// alignment: The alignment requested by the user
DQN_API char *Dqn_PointerMetadata_Init (void *ptr, Dqn_isize size, Dqn_u8 alignment);
DQN_API Dqn_PointerMetadata Dqn_PointerMetadata_Get (void *ptr);
DQN_API char *Dqn_PointerMetadata_GetRawPointer(void *ptr);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_AllocationTracer
// -------------------------------------------------------------------------------------------------
#if DQN_ALLOCATION_TRACING
#define DQN_CALL_SITE(msg) , __FILE__, __func__, __LINE__, msg
#define DQN_CALL_SITE_ARGS , char const *file_, char const *func_, int line_, char const *msg_
#define DQN_CALL_SITE_ARGS_INPUT , file_, func_, line_, msg_
#else
#define DQN_CALL_SITE(msg)
#define DQN_CALL_SITE_ARGS
#define DQN_CALL_SITE_ARGS_INPUT
#endif
struct Dqn_AllocationTrace
{
void *ptr;
Dqn_usize size;
char const *file;
char const *func;
int line;
char const *msg;
};
struct Dqn_AllocationTracer
{
// NOTE: Read only fields
Dqn_TicketMutex mutex;
// Dqn_Map<Dqn_AllocationTrace> map;
};
void Dqn_AllocationTracer_Add (Dqn_AllocationTracer *tracer, void *ptr, Dqn_usize size DQN_CALL_SITE_ARGS);
void Dqn_AllocationTracer_Remove(Dqn_AllocationTracer *tracer, void *ptr);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_CRTAllocator
// -------------------------------------------------------------------------------------------------
//
// CRT Style allocators that are for interfacing with foreign libraries that
// allow you to override malloc, realloc and free.
//
// Dqn_ArenaAllocator is not designed to be used for replacing library
// allocation stubs that expect to use CRT style allocation, i.e. malloc and
// friends. This is by design, C libraries designed around that paradigm should
// not be shoe-horned into another allocation scheme as the library you're
// interfacing with has been designed with the liberal allocating and freeing
// style encouraged by the CRT.
//
#define DQN_CRT_ALLOCATOR_MALLOC(name) void *name(size_t size)
#define DQN_CRT_ALLOCATOR_REALLOC(name) void *name(void *ptr, size_t new_size)
#define DQN_CRT_ALLOCATOR_FREE(name) void name(void *ptr)
typedef DQN_CRT_ALLOCATOR_MALLOC(Dqn_CRTAllocator_MallocProc);
typedef DQN_CRT_ALLOCATOR_REALLOC(Dqn_CRTAllocator_ReallocProc);
typedef DQN_CRT_ALLOCATOR_FREE(Dqn_CRTAllocator_FreeProc);
struct Dqn_CRTAllocator
{
// NOTE: Configurable Fields: Set after zero initialization or initialization.
Dqn_AllocationTracer *tracer; // (Optional) Initialize with Dqn_AllocationTracer_InitWithMemory() to enable allocation tracing.
Dqn_CRTAllocator_MallocProc *malloc; // (Optional) When nullptr, DQN_MALLOC is called
Dqn_CRTAllocator_ReallocProc *realloc; // (Optional) When nullptr, DQN_REALLOC is called
Dqn_CRTAllocator_FreeProc *free; // (Optional) When nullptr, DQN_FREE is called
// NOTE: Read Only Fields
Dqn_u64 malloc_bytes;
Dqn_u64 realloc_bytes;
Dqn_u64 malloc_count;
Dqn_u64 realloc_count;
Dqn_u64 free_count;
};
DQN_API Dqn_CRTAllocator Dqn_CRTAllocator_InitWithProcs(Dqn_CRTAllocator_MallocProc *allocate_proc, Dqn_CRTAllocator_ReallocProc *realloc_proc, Dqn_CRTAllocator_FreeProc *free_proc);
DQN_API void Dqn_CRTAllocator_Free (Dqn_CRTAllocator *allocator, void *ptr);
#define Dqn_CRTAllocator_TaggedMalloc( allocator, size, tag) Dqn_CRTAllocator__Malloc(allocator, size, DQN_CALL_SITE(tag))
#define Dqn_CRTAllocator_Malloc( allocator, size) Dqn_CRTAllocator__Malloc(allocator, size, DQN_CALL_SITE(""))
#define Dqn_CRTAllocator_TaggedRealloc( allocator, ptr, size, tag) Dqn_CRTAllocator__Realloc(allocator, ptr, size, DQN_CALL_SITE(tag))
#define Dqn_CRTAllocator_Realloc( allocator, ptr, size) Dqn_CRTAllocator__Realloc(allocator, ptr, size, DQN_CALL_SITE(""))
DQN_API void *Dqn_CRTAllocator__Malloc (Dqn_CRTAllocator *allocator, Dqn_usize size DQN_CALL_SITE_ARGS);
DQN_API void *Dqn_CRTAllocator__Realloc (Dqn_CRTAllocator *allocator, void *ptr, Dqn_usize size DQN_CALL_SITE_ARGS);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Map
// -------------------------------------------------------------------------------------------------
struct Dqn_ArenaAllocator; // Foward declare
template <typename T>
struct Dqn_MapEntry
{
Dqn_u64 hash;
T value;
Dqn_MapEntry *next;
};
template <typename T>
struct Dqn_Map
{
Dqn_ArenaAllocator *arena;
Dqn_MapEntry<T> **values;
Dqn_isize size; // The size of the 'values' list
// NOTE: Sum count and chain_count for total items in the list.
Dqn_isize count; // The total number of top-level slots in the 'values' list occupied
Dqn_isize chain_count; // The total number of chained elements in 'values'
Dqn_MapEntry<T> *free_list;
};
enum struct Dqn_MapCollideRule
{
Overwrite,
Chain,
Fail,
};
template <typename T> Dqn_Map<T> Dqn_Map_InitWithArena(Dqn_ArenaAllocator *arena, Dqn_isize size = 0);
template <typename T> Dqn_MapEntry<T> *Dqn_Map_FindOrAdd (Dqn_Map<T> *map, Dqn_u64 hash, Dqn_MapCollideRule rule);
template <typename T> Dqn_MapEntry<T> *Dqn_Map_Add (Dqn_Map<T> *map, Dqn_u64 hash, T *value, Dqn_MapCollideRule rule);
template <typename T> Dqn_MapEntry<T> *Dqn_Map_AddCopy (Dqn_Map<T> *map, Dqn_u64 hash, const T &value, Dqn_MapCollideRule rule);
template <typename T> Dqn_MapEntry<T> *Dqn_Map_Get (Dqn_Map<T> *map, Dqn_u64 hash);
template <typename T> void Dqn_Map_Erase (Dqn_Map<T> *map, Dqn_u64 hash, Dqn_ZeroMem zero_mem);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Array
// -------------------------------------------------------------------------------------------------
template <typename T> struct Dqn_Array
{
Dqn_ArenaAllocator *arena;
T *data;
Dqn_isize size;
Dqn_isize max;
T const operator[](Dqn_isize i) const { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data[i]; }
T operator[](Dqn_isize i) { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data[i]; }
T const *begin () const { return data; }
T const *end () const { return data + size; }
T *begin () { return data; }
T *end () { return data + size; }
T const *operator+(Dqn_isize i) const { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data + i; }
T *operator+(Dqn_isize i) { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data + i; }
};
template <typename T> DQN_API Dqn_Array<T> Dqn_Array_InitWithMemory (T *memory, Dqn_isize max, Dqn_isize size = 0);
#define Dqn_Array_InitWithArenaNoGrow( arena, Type, max, size, zero_mem) Dqn_Array__InitWithArenaNoGrow<Type>( arena, max, size, zero_mem DQN_CALL_SITE(""))
#define Dqn_Array_Reserve( array, size) Dqn_Array__Reserve(array, size DQN_CALL_SITE(""))
#define Dqn_Array_AddArray( array, items, num) Dqn_Array__AddArray(array, items, num DQN_CALL_SITE(""))
#define Dqn_Array_Add( array, item) Dqn_Array__Add(array, item DQN_CALL_SITE(""))
#define Dqn_Array_Make( array, num) Dqn_Array__Make(array, num DQN_CALL_SITE(""))
template <typename T> DQN_API void Dqn_Array_Clear (Dqn_Array<T> *a, Dqn_ZeroMem zero_mem = Dqn_ZeroMem::No);
template <typename T> DQN_API void Dqn_Array_EraseStable (Dqn_Array<T> *a, Dqn_isize index);
template <typename T> DQN_API void Dqn_Array_EraseUnstable (Dqn_Array<T> *a, Dqn_isize index);
template <typename T> DQN_API void Dqn_Array_Pop (Dqn_Array<T> *a, Dqn_isize num, Dqn_ZeroMem zero_mem = Dqn_ZeroMem::No);
template <typename T> DQN_API T * Dqn_Array_Peek (Dqn_Array<T> *a);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_String
// -------------------------------------------------------------------------------------------------
#define DQN_STRING(string) Dqn_String_Init(string, Dqn_CharCountI(string))
#define DQN_STRING_FMT(string) (int)((string).size), (string).str
struct Dqn_String
{
char *str;
Dqn_isize size;
Dqn_isize cap;
char const *begin() const { return str; }
char const *end () const { return str + size; }
char *begin() { return str; }
char *end () { return str + size; }
};
struct Dqn_StringW
{
wchar_t *str;
Dqn_isize size;
Dqn_isize cap;
wchar_t const *begin() const { return str; }
wchar_t const *end () const { return str + size; }
wchar_t *begin() { return str; }
wchar_t *end () { return str + size; }
};
// Make a string from a pre-existing string.
DQN_API Dqn_String Dqn_String_Init (char const *string, Dqn_isize size);
// Make an empty string from a the buffer. 1 byte is reserved for the null-terminator
DQN_API Dqn_String Dqn_String_InitMemory(char *buf, Dqn_isize capacity);
#define Dqn_String_TaggedFmt(arena, tag, fmt, ...) Dqn_String__Fmt(arena DQN_CALL_SITE(tag), fmt, ## __VA_ARGS__)
#define Dqn_String_Fmt(arena, fmt, ...) Dqn_String__Fmt(arena DQN_CALL_SITE(""), fmt, ## __VA_ARGS__)
#define Dqn_String_TaggedFmtV(arena, tag, fmt, ...) Dqn_String__FmtV(arena DQN_CALL_SITE(tag), fmt, ## __VA_ARGS__)
#define Dqn_String_FmtV(arena, fmt, ...) Dqn_String__FmtV(arena DQN_CALL_SITE(""), fmt, ## __VA_ARGS__)
#define Dqn_String_TaggedAllocate(arena, size, zero_mem, tag) Dqn_String__Allocate(arena, size, zero_mem DQN_CALL_SITE(tag));
#define Dqn_String_Allocate(arena, size, zero_mem) Dqn_String__Allocate(arena, size, zero_mem DQN_CALL_SITE(""));
#define Dqn_String_TaggedCopy(src, arena, tag) Dqn_String__Copy(src, arena DQN_CALL_SITE(tag))
#define Dqn_String_Copy(src, arena) Dqn_String__Copy(src, arena DQN_CALL_SITE(""))
DQN_API Dqn_String Dqn_String__Fmt(Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS, char const *fmt, ...);
DQN_API Dqn_String Dqn_String__FmtV(Dqn_ArenaAllocator *arena, char const *fmt, va_list va DQN_CALL_SITE_ARGS);
DQN_API Dqn_String Dqn_String__Allocate(Dqn_ArenaAllocator *arena, Dqn_isize size, Dqn_ZeroMem zero_mem);
DQN_API Dqn_String Dqn_String__Copy(Dqn_String const src, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS);
DQN_API Dqn_String Dqn_String_TrimWhitespaceAround(Dqn_String src);
DQN_API Dqn_b32 operator== (Dqn_String const &lhs, Dqn_String const &rhs);
// Append to the string if there's enough capacity. No reallocation is permitted, fails if not enough space
DQN_API Dqn_b32 Dqn_String_AppendFmtV (Dqn_String *str, char const *fmt, va_list va);
DQN_API Dqn_b32 Dqn_String_AppendFmt (Dqn_String *str, char const *fmt, ...);
enum struct Dqn_StringEqCase
{
Sensitive,
Insensitive,
};
DQN_API Dqn_b32 Dqn_String_Eq (Dqn_String const lhs, Dqn_String const rhs, Dqn_StringEqCase eq_case = Dqn_StringEqCase::Sensitive);
DQN_API Dqn_b32 Dqn_String_EqInsensitive (Dqn_String const lhs, Dqn_String const rhs);
DQN_API Dqn_b32 Dqn_String_StartsWith (Dqn_String string, Dqn_String prefix, Dqn_StringEqCase eq_case = Dqn_StringEqCase::Sensitive);
DQN_API Dqn_b32 Dqn_String_StartsWithInsensitive(Dqn_String string, Dqn_String prefix);
DQN_API Dqn_Array<Dqn_String> Dqn_String_Split (Dqn_String src, Dqn_ArenaAllocator *arena);
DQN_API Dqn_u64 Dqn_String_ToU64 (Dqn_String str);
DQN_API Dqn_i64 Dqn_String_ToI64 (Dqn_String str);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_FixedString
// -------------------------------------------------------------------------------------------------
template <Dqn_isize MAX_>
struct Dqn_FixedString
{
union { char data[MAX_]; char str[MAX_]; char buf[MAX_]; };
Dqn_isize size;
Dqn_b32 operator==(Dqn_FixedString const &other) const
{
if (size != other.size) return false;
bool result = DQN_MEMCMP(data, other.data, size);
return result;
}
Dqn_b32 operator!=(Dqn_FixedString const &other) const { return !(*this == other); }
char const &operator[] (Dqn_isize i) const { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data[i]; }
char &operator[] (Dqn_isize i) { DQN_ASSERT_MSG(i >= 0 && i < size, "%d >= 0 && %d < %d", i, size); return data[i]; }
char const *begin () const { return data; }
char const *end () const { return data + size; }
char *begin () { return data; }
char *end () { return data + size; }
};
template <Dqn_isize MAX_> DQN_API Dqn_FixedString<MAX_> Dqn_FixedString_Fmt (char const *fmt, ...);
template <Dqn_isize MAX_> DQN_API Dqn_isize Dqn_FixedString_Max (Dqn_FixedString<MAX_> *);
template <Dqn_isize MAX_> DQN_API void Dqn_FixedString_Clear (Dqn_FixedString<MAX_> *str);
template <Dqn_isize MAX_> DQN_API Dqn_b32 Dqn_FixedString_AppendFmtV(Dqn_FixedString<MAX_> *str, char const *fmt, va_list va);
template <Dqn_isize MAX_> DQN_API Dqn_b32 Dqn_FixedString_AppendFmt (Dqn_FixedString<MAX_> *str, char const *fmt, ...);
template <Dqn_isize MAX_> DQN_API Dqn_b32 Dqn_FixedString_Append (Dqn_FixedString<MAX_> *str, char const *src, Dqn_isize size = -1);
template <Dqn_isize MAX_> DQN_API Dqn_b32 Dqn_FixedString_Append (Dqn_FixedString<MAX_> *str, Dqn_String src);
template <Dqn_isize MAX_> DQN_API Dqn_String Dqn_FixedString_ToString (Dqn_FixedString<MAX_> const *str);
// -------------------------------------------------------------------------------------------------
// NOTE: Math
// -------------------------------------------------------------------------------------------------
struct Dqn_V2I
{
Dqn_i32 x, y;
Dqn_V2I() = default;
Dqn_V2I(Dqn_f32 x_, Dqn_f32 y_): x((Dqn_i32)x_), y((Dqn_i32)y_) {}
Dqn_V2I(Dqn_i32 x_, Dqn_i32 y_): x(x_), y(y_) {}
Dqn_V2I(Dqn_i32 xy): x(xy), y(xy) {}
bool operator!=(Dqn_V2I other) const { return !(*this == other); }
bool operator==(Dqn_V2I other) const { return (x == other.x) && (y == other.y); }
bool operator>=(Dqn_V2I other) const { return (x >= other.x) && (y >= other.y); }
bool operator<=(Dqn_V2I other) const { return (x <= other.x) && (y <= other.y); }
bool operator< (Dqn_V2I other) const { return (x < other.x) && (y < other.y); }
bool operator> (Dqn_V2I other) const { return (x > other.x) && (y > other.y); }
Dqn_V2I operator- (Dqn_V2I other) const { Dqn_V2I result(x - other.x, y - other.y); return result; }
Dqn_V2I operator+ (Dqn_V2I other) const { Dqn_V2I result(x + other.x, y + other.y); return result; }
Dqn_V2I operator* (Dqn_V2I other) const { Dqn_V2I result(x * other.x, y * other.y); return result; }
Dqn_V2I operator* (Dqn_f32 other) const { Dqn_V2I result(x * other, y * other); return result; }
Dqn_V2I operator* (Dqn_i32 other) const { Dqn_V2I result(x * other, y * other); return result; }
Dqn_V2I operator/ (Dqn_V2I other) const { Dqn_V2I result(x / other.x, y / other.y); return result; }
Dqn_V2I operator/ (Dqn_f32 other) const { Dqn_V2I result(x / other, y / other); return result; }
Dqn_V2I operator/ (Dqn_i32 other) const { Dqn_V2I result(x / other, y / other); return result; }
Dqn_V2I &operator*=(Dqn_V2I other) { *this = *this * other; return *this; }
Dqn_V2I &operator*=(Dqn_f32 other) { *this = *this * other; return *this; }
Dqn_V2I &operator*=(Dqn_i32 other) { *this = *this * other; return *this; }
Dqn_V2I &operator-=(Dqn_V2I other) { *this = *this - other; return *this; }
Dqn_V2I &operator+=(Dqn_V2I other) { *this = *this + other; return *this; }
};
struct Dqn_V2
{
Dqn_f32 x, y;
Dqn_V2() = default;
Dqn_V2(Dqn_f32 a) : x(a), y(a) {}
Dqn_V2(Dqn_i32 a) : x((Dqn_f32)a), y((Dqn_f32)a) {}
Dqn_V2(Dqn_f32 x, Dqn_f32 y): x(x), y(y) {}
Dqn_V2(Dqn_i32 x, Dqn_i32 y): x((Dqn_f32)x), y((Dqn_f32)y) {}
Dqn_V2(Dqn_V2I a) : x((Dqn_f32)a.x),y((Dqn_f32)a.y){}
bool operator!=(Dqn_V2 other) const { return !(*this == other); }
bool operator==(Dqn_V2 other) const { return (x == other.x) && (y == other.y); }
bool operator>=(Dqn_V2 other) const { return (x >= other.x) && (y >= other.y); }
bool operator<=(Dqn_V2 other) const { return (x <= other.x) && (y <= other.y); }
bool operator< (Dqn_V2 other) const { return (x < other.x) && (y < other.y); }
bool operator> (Dqn_V2 other) const { return (x > other.x) && (y > other.y); }
Dqn_V2 operator- (Dqn_V2 other) const { Dqn_V2 result(x - other.x, y - other.y); return result; }
Dqn_V2 operator+ (Dqn_V2 other) const { Dqn_V2 result(x + other.x, y + other.y); return result; }
Dqn_V2 operator* (Dqn_V2 other) const { Dqn_V2 result(x * other.x, y * other.y); return result; }
Dqn_V2 operator* (Dqn_f32 other) const { Dqn_V2 result(x * other, y * other); return result; }
Dqn_V2 operator* (Dqn_i32 other) const { Dqn_V2 result(x * other, y * other); return result; }
Dqn_V2 operator/ (Dqn_V2 other) const { Dqn_V2 result(x / other.x, y / other.y); return result; }
Dqn_V2 operator/ (Dqn_f32 other) const { Dqn_V2 result(x / other, y / other); return result; }
Dqn_V2 operator/ (Dqn_i32 other) const { Dqn_V2 result(x / other, y / other); return result; }
Dqn_V2 &operator*=(Dqn_V2 other) { *this = *this * other; return *this; }
Dqn_V2 &operator*=(Dqn_f32 other) { *this = *this * other; return *this; }
Dqn_V2 &operator*=(Dqn_i32 other) { *this = *this * other; return *this; }
Dqn_V2 &operator/=(Dqn_V2 other) { *this = *this / other; return *this; }
Dqn_V2 &operator/=(Dqn_f32 other) { *this = *this / other; return *this; }
Dqn_V2 &operator/=(Dqn_i32 other) { *this = *this / other; return *this; }
Dqn_V2 &operator-=(Dqn_V2 other) { *this = *this - other; return *this; }
Dqn_V2 &operator+=(Dqn_V2 other) { *this = *this + other; return *this; }
};
struct Dqn_V3
{
Dqn_f32 x, y, z;
Dqn_V3() = default;
Dqn_V3(Dqn_f32 a) : x(a), y(a), z(a) {}
Dqn_V3(Dqn_i32 a) : x(DQN_CAST(Dqn_f32)a), y(DQN_CAST(Dqn_f32)a), z(DQN_CAST(Dqn_f32)a) {}
Dqn_V3(Dqn_f32 x, Dqn_f32 y, Dqn_f32 z): x(x), y(y), z(z) {}
Dqn_V3(Dqn_i32 x, Dqn_i32 y, Dqn_f32 z): x(DQN_CAST(Dqn_f32)x), y(DQN_CAST(Dqn_f32)y), z(DQN_CAST(Dqn_f32)z) {}
Dqn_V3(Dqn_V2 xy, Dqn_f32 z) : x(xy.x), y(xy.y), z(z) {}
bool operator!= (Dqn_V3 other) const { return !(*this == other); }
bool operator== (Dqn_V3 other) const { return (x == other.x) && (y == other.y) && (z == other.z); }
bool operator>= (Dqn_V3 other) const { return (x >= other.x) && (y >= other.y) && (z >= other.z); }
bool operator<= (Dqn_V3 other) const { return (x <= other.x) && (y <= other.y) && (z <= other.z); }
bool operator< (Dqn_V3 other) const { return (x < other.x) && (y < other.y) && (z < other.z); }
bool operator> (Dqn_V3 other) const { return (x > other.x) && (y > other.y) && (z > other.z); }
Dqn_V3 operator- (Dqn_V3 other) const { Dqn_V3 result(x - other.x, y - other.y, z - other.z); return result; }
Dqn_V3 operator+ (Dqn_V3 other) const { Dqn_V3 result(x + other.x, y + other.y, z + other.z); return result; }
Dqn_V3 operator* (Dqn_V3 other) const { Dqn_V3 result(x * other.x, y * other.y, z * other.z); return result; }
Dqn_V3 operator* (Dqn_f32 other) const { Dqn_V3 result(x * other, y * other, z * other); return result; }
Dqn_V3 operator* (Dqn_i32 other) const { Dqn_V3 result(x * other, y * other, z * other); return result; }
Dqn_V3 operator/ (Dqn_V3 other) const { Dqn_V3 result(x / other.x, y / other.y, z / other.z); return result; }
Dqn_V3 operator/ (Dqn_f32 other) const { Dqn_V3 result(x / other, y / other, z / other); return result; }
Dqn_V3 operator/ (Dqn_i32 other) const { Dqn_V3 result(x / other, y / other, z / other); return result; }
Dqn_V3 &operator*=(Dqn_V3 other) { *this = *this * other; return *this; }
Dqn_V3 &operator*=(Dqn_f32 other) { *this = *this * other; return *this; }
Dqn_V3 &operator*=(Dqn_i32 other) { *this = *this * other; return *this; }
Dqn_V3 &operator/=(Dqn_V3 other) { *this = *this / other; return *this; }
Dqn_V3 &operator/=(Dqn_f32 other) { *this = *this / other; return *this; }
Dqn_V3 &operator/=(Dqn_i32 other) { *this = *this / other; return *this; }
Dqn_V3 &operator-=(Dqn_V3 other) { *this = *this - other; return *this; }
Dqn_V3 &operator+=(Dqn_V3 other) { *this = *this + other; return *this; }
};
union Dqn_V4
{
struct { Dqn_f32 x, y, z, w; };
struct { Dqn_f32 r, g, b, a; };
struct { Dqn_V2 min; Dqn_V2 max; } v2;
Dqn_V3 rgb;
Dqn_f32 e[4];
Dqn_V4() = default;
Dqn_V4(Dqn_f32 xyzw) : x(xyzw), y(xyzw), z(xyzw), w(xyzw) {}
Dqn_V4(Dqn_f32 x, Dqn_f32 y, Dqn_f32 z, Dqn_f32 w): x(x), y(y), z(z), w(w) {}
Dqn_V4(Dqn_i32 x, Dqn_i32 y, Dqn_i32 z, Dqn_i32 w): x(DQN_CAST(Dqn_f32)x), y(DQN_CAST(Dqn_f32)y), z(DQN_CAST(Dqn_f32)z), w(DQN_CAST(Dqn_f32)w) {}
Dqn_V4(Dqn_V3 xyz, Dqn_f32 w) : x(xyz.x), y(xyz.y), z(xyz.z), w(w) {}
Dqn_V4(Dqn_V2 v2) : x(v2.x), y(v2.y), z(v2.x), w(v2.y) {}
bool operator!=(Dqn_V4 other) const { return !(*this == other); }
bool operator==(Dqn_V4 other) const { return (x == other.x) && (y == other.y) && (z == other.z) && (w == other.w); }
bool operator>=(Dqn_V4 other) const { return (x >= other.x) && (y >= other.y) && (z >= other.z) && (w >= other.w); }
bool operator<=(Dqn_V4 other) const { return (x <= other.x) && (y <= other.y) && (z <= other.z) && (w <= other.w); }
bool operator< (Dqn_V4 other) const { return (x < other.x) && (y < other.y) && (z < other.z) && (w < other.w); }
bool operator> (Dqn_V4 other) const { return (x > other.x) && (y > other.y) && (z > other.z) && (w > other.w); }
Dqn_V4 operator- (Dqn_V4 other) const { Dqn_V4 result(x - other.x, y - other.y, z - other.z, w - other.w); return result; }
Dqn_V4 operator+ (Dqn_V4 other) const { Dqn_V4 result(x + other.x, y + other.y, z + other.z, w + other.w); return result; }
Dqn_V4 operator* (Dqn_V4 other) const { Dqn_V4 result(x * other.x, y * other.y, z * other.z, w * other.w); return result; }
Dqn_V4 operator* (Dqn_f32 other) const { Dqn_V4 result(x * other, y * other, z * other, w * other); return result; }
Dqn_V4 operator* (Dqn_i32 other) const { Dqn_V4 result(x * other, y * other, z * other, w * other); return result; }
Dqn_V4 operator/ (Dqn_f32 other) const { Dqn_V4 result(x / other, y / other, z / other, w / other); return result; }
Dqn_V4 &operator*=(Dqn_V4 other) { *this = *this * other; return *this; }
Dqn_V4 &operator*=(Dqn_f32 other) { *this = *this * other; return *this; }
Dqn_V4 &operator*=(Dqn_i32 other) { *this = *this * other; return *this; }
Dqn_V4 &operator-=(Dqn_V4 other) { *this = *this - other; return *this; }
Dqn_V4 &operator+=(Dqn_V4 other) { *this = *this + other; return *this; }
};
// NOTE: Column major matrix
struct Dqn_M4
{
Dqn_f32 columns[4][4];
};
DQN_API Dqn_V2I Dqn_V2_ToV2I (Dqn_V2 a);
DQN_API Dqn_V2 Dqn_V2_Min (Dqn_V2 a, Dqn_V2 b);
DQN_API Dqn_V2 Dqn_V2_Max (Dqn_V2 a, Dqn_V2 b);
DQN_API Dqn_V2 Dqn_V2_Abs (Dqn_V2 a);
DQN_API Dqn_f32 Dqn_V2_Dot (Dqn_V2 a, Dqn_V2 b);
DQN_API Dqn_f32 Dqn_V2_LengthSq (Dqn_V2 a, Dqn_V2 b);
DQN_API Dqn_V2 Dqn_V2_Normalise (Dqn_V2 a);
DQN_API Dqn_V2 Dqn_V2_Perpendicular(Dqn_V2 a);
DQN_API Dqn_f32 Dqn_V3_LengthSq (Dqn_V3 a);
DQN_API Dqn_f32 Dqn_V3_Length (Dqn_V3 a);
DQN_API Dqn_V3 Dqn_V3_Normalise (Dqn_V3 a);
DQN_API Dqn_f32 Dqn_V4_Dot (Dqn_V4 a, Dqn_V4 b);
DQN_API Dqn_M4 Dqn_M4_Identity ();
DQN_API Dqn_M4 Dqn_M4_ScaleF (Dqn_f32 x, Dqn_f32 y, Dqn_f32 z);
DQN_API Dqn_M4 Dqn_M4_Scale (Dqn_V3 xyz);
DQN_API Dqn_M4 Dqn_M4_TranslateF (Dqn_f32 x, Dqn_f32 y, Dqn_f32 z);
DQN_API Dqn_M4 Dqn_M4_Translate (Dqn_V3 xyz);
DQN_API Dqn_M4 Dqn_M4_Transpose (Dqn_M4 mat);
DQN_API Dqn_M4 Dqn_M4_Rotate (Dqn_V3 axis, Dqn_f32 radians);
DQN_API Dqn_M4 Dqn_M4_Orthographic (Dqn_f32 left, Dqn_f32 right, Dqn_f32 bottom, Dqn_f32 top, Dqn_f32 z_near, Dqn_f32 z_far);
DQN_API Dqn_M4 Dqn_M4_Perspective (Dqn_f32 fov /*radians*/, Dqn_f32 aspect, Dqn_f32 z_near, Dqn_f32 z_far);
DQN_API Dqn_M4 Dqn_M4_Add (Dqn_M4 lhs, Dqn_M4 rhs);
DQN_API Dqn_M4 Dqn_M4_Sub (Dqn_M4 lhs, Dqn_M4 rhs);
DQN_API Dqn_M4 Dqn_M4_Mul (Dqn_M4 lhs, Dqn_M4 rhs);
DQN_API Dqn_M4 Dqn_M4_Div (Dqn_M4 lhs, Dqn_M4 rhs);
DQN_API Dqn_M4 Dqn_M4_AddF (Dqn_M4 lhs, Dqn_f32 rhs);
DQN_API Dqn_M4 Dqn_M4_SubF (Dqn_M4 lhs, Dqn_f32 rhs);
DQN_API Dqn_M4 Dqn_M4_MulF (Dqn_M4 lhs, Dqn_f32 rhs);
DQN_API Dqn_M4 Dqn_M4_DivF (Dqn_M4 lhs, Dqn_f32 rhs);
DQN_API Dqn_FixedString<256> Dqn_M4_ColumnMajorString(Dqn_M4 mat);
struct Dqn_Rect
{
Dqn_V2 min, max;
Dqn_Rect() = default;
Dqn_Rect(Dqn_V2 min, Dqn_V2 max) : min(min), max(max) {}
Dqn_Rect(Dqn_V2I min, Dqn_V2I max) : min(min), max(max) {}
Dqn_Rect(Dqn_f32 x, Dqn_f32 y, Dqn_f32 max_x, Dqn_f32 max_y) : min(x, y), max(max_x, max_y) {}
Dqn_b32 operator==(Dqn_Rect other) const { return (min == other.min) && (max == other.max); }
};
struct Dqn_RectI32
{
Dqn_V2I min, max;
Dqn_RectI32() = default;
Dqn_RectI32(Dqn_V2I min, Dqn_V2I max) : min(min), max(max) {}
};
DQN_API Dqn_Rect Dqn_Rect_InitFromPosAndSize(Dqn_V2 pos, Dqn_V2 size);
DQN_API Dqn_V2 Dqn_Rect_Center (Dqn_Rect rect);
DQN_API Dqn_b32 Dqn_Rect_ContainsPoint (Dqn_Rect rect, Dqn_V2 p);
DQN_API Dqn_b32 Dqn_Rect_ContainsRect (Dqn_Rect a, Dqn_Rect b);
DQN_API Dqn_V2 Dqn_Rect_Size (Dqn_Rect rect);
DQN_API Dqn_Rect Dqn_Rect_Move (Dqn_Rect src, Dqn_V2 move_amount);
DQN_API Dqn_Rect Dqn_Rect_MoveTo (Dqn_Rect src, Dqn_V2 dest);
DQN_API Dqn_b32 Dqn_Rect_Intersects (Dqn_Rect a, Dqn_Rect b);
DQN_API Dqn_Rect Dqn_Rect_Intersection (Dqn_Rect a, Dqn_Rect b);
DQN_API Dqn_Rect Dqn_Rect_Union (Dqn_Rect a, Dqn_Rect b);
DQN_API Dqn_Rect Dqn_Rect_FromRectI32 (Dqn_RectI32 a);
DQN_API Dqn_V2I Dqn_RectI32_Size (Dqn_RectI32 rect);
// -------------------------------------------------------------------------------------------------
// NOTE: Math Utils
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_V2 Dqn_LerpV2 (Dqn_V2 a, Dqn_f32 t, Dqn_V2 b);
DQN_API Dqn_f32 Dqn_LerpF32(Dqn_f32 a, Dqn_f32 t, Dqn_f32 b);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_ArenaAllocator
// -------------------------------------------------------------------------------------------------
struct Dqn_ArenaAllocatorBlock
{
Dqn_AllocationTracer *tracer;
void *memory;
Dqn_isize size;
Dqn_isize used;
Dqn_ArenaAllocatorBlock *prev;
Dqn_ArenaAllocatorBlock *next;
};
enum struct Dqn_ArenaAllocatorMemProvider
{
CRT,
Virtual,
UserMemory,
};
Dqn_usize const DQN_MEM_ARENA_DEFAULT_MIN_BLOCK_SIZE = DQN_KILOBYTES(4);
struct Dqn_ArenaAllocator
{
Dqn_ArenaAllocatorMemProvider mem_provider;
// NOTE: Read/Write
Dqn_isize min_block_size; // (Optional): When 0, DQN_MEM_ARENA_DEFAULT_MIN_BLOCK_SIZE is used. Otherwise every new block will at minimum be sized to this value.
// The following fields are should be set once after zero initialisation
Dqn_AllocationTracer *tracer;
// NOTE: Read Only
Dqn_ArenaAllocatorBlock *curr_mem_block;
Dqn_ArenaAllocatorBlock *top_mem_block;
Dqn_isize highest_used_mark; // TODO(dqn): This is not implemented yet
int total_allocated_mem_blocks; // Total throughout the life-time of the arena
Dqn_isize usage_before_last_reset;
Dqn_isize wastage_before_last_reset;
};
struct Dqn_ArenaAllocatorRegion
{
Dqn_ArenaAllocator *arena;
Dqn_ArenaAllocatorBlock *curr_mem_block;
Dqn_isize curr_mem_block_used;
Dqn_ArenaAllocatorBlock *top_mem_block;
};
struct Dqn_ArenaAllocatorAutoRegion
{
Dqn_ArenaAllocatorAutoRegion(Dqn_ArenaAllocator *arena);
~Dqn_ArenaAllocatorAutoRegion();
Dqn_ArenaAllocatorRegion region;
};
struct Dqn_ArenaAllocatorStats
{
Dqn_isize total_used;
Dqn_isize total_allocated;
Dqn_isize total_wasted;
Dqn_isize total_blocks;
};
// NOTE: Dqn_ArenaAllocator can also be zero initialised and will default to the heap allocator with 0 size.
DQN_API Dqn_ArenaAllocator Dqn_ArenaAllocator_InitWithMemory(void *memory, Dqn_isize size);
DQN_API Dqn_ArenaAllocator Dqn_ArenaAllocator_InitWithCRT (Dqn_isize size DQN_CALL_SITE_ARGS);
DQN_API void Dqn_ArenaAllocator_Free (Dqn_ArenaAllocator *arena);
DQN_API Dqn_b32 Dqn_ArenaAllocator_Reserve (Dqn_ArenaAllocator *arena, Dqn_isize size DQN_CALL_SITE_ARGS);
DQN_API void Dqn_ArenaAllocator_ResetUsage (Dqn_ArenaAllocator *arena, Dqn_ZeroMem zero_mem);
DQN_API Dqn_ArenaAllocatorRegion Dqn_ArenaAllocator_BeginRegion (Dqn_ArenaAllocator *arena);
DQN_API void Dqn_ArenaAllocator_EndRegion (Dqn_ArenaAllocatorRegion region);
DQN_API Dqn_ArenaAllocatorAutoRegion Dqn_ArenaAllocator_AutoRegion (Dqn_ArenaAllocator *arena);
#define Dqn_ArenaAllocator_TaggedAllocate(arena, size, alignment, zero_mem, tag) Dqn_ArenaAllocator__Allocate(arena, size, alignment, zero_mem DQN_CALL_SITE(tag))
#define Dqn_ArenaAllocator_Allocate(arena, size, alignment, zero_mem) Dqn_ArenaAllocator__Allocate(arena, size, alignment, zero_mem DQN_CALL_SITE(""))
#define Dqn_ArenaAllocator_TaggedNew(arena, Type, zero_mem, tag) (Type *)Dqn_ArenaAllocator__Allocate(arena, sizeof(Type), alignof(Type), zero_mem DQN_CALL_SITE(tag))
#define Dqn_ArenaAllocator_New(arena, Type, zero_mem) (Type *)Dqn_ArenaAllocator__Allocate(arena, sizeof(Type), alignof(Type), zero_mem DQN_CALL_SITE(""))
#define Dqn_ArenaAllocator_TaggedNewArray(arena, Type, count, zero_mem, tag) (Type *)Dqn_ArenaAllocator__Allocate(arena, sizeof(Type) * count, alignof(Type), zero_mem DQN_CALL_SITE(tag))
#define Dqn_ArenaAllocator_NewArray(arena, Type, count, zero_mem) (Type *)Dqn_ArenaAllocator__Allocate(arena, sizeof(Type) * count, alignof(Type), zero_mem DQN_CALL_SITE(""))
#define Dqn_ArenaAllocator_TaggedCopyNullTerminate(arena, Type, src, count, tag) (Type *)Dqn_ArenaAllocator__CopyNullTerminate(arena, src, sizeof(*src) * count, alignof(Type) DQN_CALL_SITE(tag))
#define Dqn_ArenaAllocator_CopyNullTerminate(arena, Type, src, count) (Type *)Dqn_ArenaAllocator__CopyNullTerminate(arena, src, sizeof(*src) * count, alignof(Type) DQN_CALL_SITE(""))
#define Dqn_ArenaAllocator_TaggedCopy(arena, Type, src, count, tag) (Type *)Dqn_ArenaAllocator__Copy(arena, src, sizeof(*src) * count, alignof(Type) DQN_CALL_SITE(tag))
#define Dqn_ArenaAllocator_Copy(arena, Type, src, count) (Type *)Dqn_ArenaAllocator__Copy(arena, src, sizeof(*src) * count, alignof(Type) DQN_CALL_SITE(""))
DQN_API void *Dqn_ArenaAllocator__Copy (Dqn_ArenaAllocator *arena, void *src, Dqn_isize size, Dqn_u8 alignment DQN_CALL_SITE_ARGS);
DQN_API void *Dqn_ArenaAllocator__CopyNullTerminate (Dqn_ArenaAllocator *arena, void *src, Dqn_isize size, Dqn_u8 alignment DQN_CALL_SITE_ARGS);
DQN_API void *Dqn_ArenaAllocator__Allocate (Dqn_ArenaAllocator *arena, Dqn_isize size, Dqn_u8 alignment, Dqn_ZeroMem zero_mem DQN_CALL_SITE_ARGS);
DQN_API Dqn_ArenaAllocatorStats Dqn_ArenaAllocator_GetStats (Dqn_ArenaAllocator const *arena);
DQN_API void Dqn_ArenaAllocator_DumpStatsToLog (Dqn_ArenaAllocator const *arena, char const *label);
DQN_API Dqn_FixedString<512> Dqn_ArenaAllocator_StatsString (Dqn_ArenaAllocator const *arena, char const *label);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Bit
// -------------------------------------------------------------------------------------------------
DQN_API void Dqn_Bit_UnsetInplace(Dqn_u32 *flags, Dqn_u32 bitfield);
DQN_API void Dqn_Bit_SetInplace(Dqn_u32 *flags, Dqn_u32 bitfield);
DQN_API Dqn_b32 Dqn_Bit_IsSet(Dqn_u32 bits, Dqn_u32 bits_to_set);
DQN_API Dqn_b32 Dqn_Bit_IsNotSet(Dqn_u32 bits, Dqn_u32 bits_to_check);
// -------------------------------------------------------------------------------------------------
// NOTE: Safe Arithmetic
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_i64 Dqn_Safe_AddI64 (Dqn_i64 a, Dqn_i64 b);
DQN_API Dqn_i64 Dqn_Safe_MulI64 (Dqn_i64 a, Dqn_i64 b);
DQN_API Dqn_u64 Dqn_Safe_AddU64 (Dqn_u64 a, Dqn_u64 b);
DQN_API Dqn_u64 Dqn_Safe_SubU64 (Dqn_u64 a, Dqn_u64 b);
DQN_API Dqn_u32 Dqn_Safe_SubU32 (Dqn_u32 a, Dqn_u32 b);
DQN_API Dqn_u64 Dqn_Safe_MulU64 (Dqn_u64 a, Dqn_u64 b);
DQN_API int Dqn_Safe_TruncateISizeToInt (Dqn_isize val);
DQN_API Dqn_i32 Dqn_Safe_TruncateISizeToI32 (Dqn_isize val);
DQN_API Dqn_i8 Dqn_Safe_TruncateISizeToI8 (Dqn_isize val);
DQN_API Dqn_u32 Dqn_Safe_TruncateUSizeToU32 (Dqn_usize val);
DQN_API int Dqn_Safe_TruncateUSizeToI32 (Dqn_usize val);
DQN_API int Dqn_Safe_TruncateUSizeToInt (Dqn_usize val);
DQN_API Dqn_isize Dqn_Safe_TruncateUSizeToISize(Dqn_usize val);
DQN_API Dqn_u32 Dqn_Safe_TruncateU64ToU32 (Dqn_u64 val);
DQN_API Dqn_u16 Dqn_Safe_TruncateU64ToU16 (Dqn_u64 val);
DQN_API Dqn_u8 Dqn_Safe_TruncateU64ToU8 (Dqn_u64 val);
DQN_API Dqn_i64 Dqn_Safe_TruncateU64ToI64 (Dqn_u64 val);
DQN_API Dqn_i32 Dqn_Safe_TruncateU64ToI32 (Dqn_u64 val);
DQN_API Dqn_i16 Dqn_Safe_TruncateU64ToI16 (Dqn_u64 val);
DQN_API Dqn_i8 Dqn_Safe_TruncateU64ToI8 (Dqn_u64 val);
DQN_API int Dqn_Safe_TruncateU64ToInt (Dqn_u64 val);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Char
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_b32 Dqn_Char_IsAlpha (char ch);
DQN_API Dqn_b32 Dqn_Char_IsDigit (char ch);
DQN_API Dqn_b32 Dqn_Char_IsAlphaNum (char ch);
DQN_API Dqn_b32 Dqn_Char_IsWhitespace (char ch);
DQN_API Dqn_b32 Dqn_Char_IsHex (char ch);
DQN_API Dqn_u8 Dqn_Char_HexToU8 (char ch);
DQN_API char Dqn_Char_ToHex (char ch);
DQN_API char Dqn_Char_ToHexUnchecked(char ch);
DQN_API char Dqn_Char_ToLower (char ch);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Hex
// -------------------------------------------------------------------------------------------------
DQN_API char const *Dqn_Hex_CStringTrimSpaceAnd0xPrefix(char const *hex, Dqn_isize size, Dqn_isize *real_size);
DQN_API Dqn_String Dqn_Hex_StringTrimSpaceAnd0xPrefix (Dqn_String const string);
// Convert a char string to a binary representation without any checks except assertions in debug.
DQN_API Dqn_u8 *Dqn_Hex_CStringToU8BytesUnchecked(char const *hex, Dqn_isize size, Dqn_isize *real_size, Dqn_ArenaAllocator *arena);
DQN_API Dqn_Array<Dqn_u8> Dqn_Hex_CStringToU8ArrayUnchecked(char const *hex, Dqn_isize size, Dqn_ArenaAllocator *arena);
DQN_API Dqn_Array<Dqn_u8> Dqn_Hex_StringToU8ArrayUnchecked (Dqn_String const hex, Dqn_ArenaAllocator *arena);
// Convert a series of bytes into a string
DQN_API char *Dqn_Hex_U8BytesToCString(char const *bytes, Dqn_isize size, Dqn_ArenaAllocator *arena);
DQN_API Dqn_String Dqn_Hex_U8ArrayToString (Dqn_Array<Dqn_u8> const bytes, Dqn_ArenaAllocator *arena);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Str
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_b32 Dqn_Str_Equals (char const *a, char const *b, Dqn_isize a_len = -1, Dqn_isize b_len = -1);
DQN_API char const *Dqn_Str_FindMulti (char const *buf, char const *find_list[], Dqn_isize const *find_string_lens, Dqn_isize find_len, Dqn_isize *match_index, Dqn_isize buf_len = -1);
DQN_API char const *Dqn_Str_Find (char const *buf, char const *find, Dqn_isize buf_len = -1, Dqn_isize find_len = -1, Dqn_b32 case_insensitive = false);
DQN_API char const *Dqn_Str_FileNameFromPath (char const *path, Dqn_isize len = -1, Dqn_isize *file_name_len = nullptr);
DQN_API Dqn_isize Dqn_Str_Size (char const *a);
DQN_API Dqn_b32 Dqn_Str_Match (char const *src, char const *find, int find_len);
DQN_API char const *Dqn_Str_SkipToChar (char const *src, char ch);
DQN_API char const *Dqn_Str_SkipToNextAlphaNum (char const *src);
DQN_API char const *Dqn_Str_SkipToNextDigit (char const *src);
DQN_API char const *Dqn_Str_SkipToNextChar (char const *src);
DQN_API char const *Dqn_Str_SkipToNextWord (char const *src);
DQN_API char const *Dqn_Str_SkipToNextWhitespace (char const *src);
DQN_API char const *Dqn_Str_SkipWhitespace (char const *src);
DQN_API char const *Dqn_Str_SkipToCharInPlace (char const **src, char ch);
DQN_API char const *Dqn_Str_SkipToNextAlphaNumInPlace (char const **src);
DQN_API char const *Dqn_Str_SkipToNextCharInPlace (char const **src);
DQN_API char const *Dqn_Str_SkipToNextWhitespaceInPlace(char const **src);
DQN_API char const *Dqn_Str_SkipToNextWordInPlace (char const **src);
DQN_API char const *Dqn_Str_SkipWhitespaceInPlace (char const **src);
DQN_API char const *Dqn_Str_TrimWhitespaceAround (char const *src, Dqn_isize size, Dqn_isize *new_size);
DQN_API char const *Dqn_Str_TrimPrefix (char const *src, Dqn_isize size, char const *prefix, Dqn_isize prefix_size, Dqn_isize *trimmed_size);
// separator: The separator between the thousand-th digits, i.e. separator = ',' converts '1,234' to '1234'.
DQN_API Dqn_u64 Dqn_Str_ToU64 (char const *buf, int len = -1, char separator = ',');
DQN_API Dqn_i64 Dqn_Str_ToI64 (char const *buf, int len = -1, char separator = ',');
DQN_API Dqn_isize Dqn_StrW_Size (wchar_t const *a);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_File
// -------------------------------------------------------------------------------------------------
struct Dqn_FileInfo
{
Dqn_u64 create_time_in_s;
Dqn_u64 last_write_time_in_s;
Dqn_u64 last_access_time_in_s;
Dqn_u64 size;
Dqn_b8 valid;
operator bool() const { return valid; }
};
DQN_API Dqn_b32 Dqn_File_Exists(char const *path);
DQN_API Dqn_FileInfo Dqn_File_Info (char const *path);
// file_size: (Optional) The size of the file in bytes, the allocated buffer is (file_size + 1 [null terminator]) in bytes.
// allocator: (Optional) When null, the buffer is allocated with DQN_MALLOC, result should be freed with DQN_FREE.
// return: nullptr if allocation failed.
#define Dqn_File_ArenaReadFile( file, file_size, arena) Dqn_File__ArenaReadFile(file, file_size, arena DQN_CALL_SITE(""))
#define Dqn_File_TaggedArenaReadFileToString(file, arena, tag) Dqn_File__ArenaReadFileToString(file, arena DQN_CALL_SITE(tag))
#define Dqn_File_ArenaReadFileToString(file, arena) Dqn_File__ArenaReadFileToString(file, arena DQN_CALL_SITE(""))
DQN_API char *Dqn_File__ArenaReadFile (char const *file, Dqn_isize *file_size, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS);
DQN_API Dqn_String Dqn_File__ArenaReadFileToString(char const *file, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS);
DQN_API Dqn_b32 Dqn_File_WriteFile (char const *file, char const *buffer, Dqn_isize buffer_size);
// -------------------------------------------------------------------------------------------------
// NOTE: Utiltiies
// -------------------------------------------------------------------------------------------------
struct Dqn_U64Str
{
// Points to the start of the str in the buffer, not necessarily buf since
// we write into the buffer in reverse
char *str;
char buf[27]; // NOTE(dqn): 27 is the maximum size of Dqn_u64 including commas
int len;
};
enum struct Dqn_EpochTimeFormat
{
Day_Month_D_HH_MM_SS_YYYYY, // "Thu Aug 23 14:55:02 2001"
YYYY_MM_DD // "2001-08-23"
};
// Produces a string representing the date in local machine time.
// timestamp: Unix epoch timestamp
DQN_API char *Dqn_EpochTimeToLocalDate(Dqn_i64 timestamp, char *buf, Dqn_isize buf_len);
DQN_API Dqn_u64 Dqn_PerfCounter_Now ();
DQN_API Dqn_f64 Dqn_PerfCounter_S (Dqn_u64 begin, Dqn_u64 end);
DQN_API Dqn_f64 Dqn_PerfCounter_Ms (Dqn_u64 begin, Dqn_u64 end);
DQN_API Dqn_f64 Dqn_PerfCounter_MicroS(Dqn_u64 begin, Dqn_u64 end);
DQN_API Dqn_f64 Dqn_PerfCounter_Ns (Dqn_u64 begin, Dqn_u64 end);
struct Dqn_Timer // NOTE: Uses the PerfCounter API
{
Dqn_u64 start;
Dqn_u64 end;
};
DQN_API Dqn_Timer Dqn_Timer_Begin ();
DQN_API void Dqn_Timer_End (Dqn_Timer *timer);
DQN_API Dqn_f64 Dqn_Timer_S (Dqn_Timer timer);
DQN_API Dqn_f64 Dqn_Timer_Ms (Dqn_Timer timer);
DQN_API Dqn_f64 Dqn_Timer_MicroS(Dqn_Timer timer);
DQN_API Dqn_f64 Dqn_Timer_Ns (Dqn_Timer timer);
DQN_API char *Dqn_U64ToStr (Dqn_u64 val, Dqn_U64Str *result, Dqn_b32 comma_sep);
DQN_API char *Dqn_U64ToTempStr (Dqn_u64 val, Dqn_b32 comma_sep = true);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Win
// -------------------------------------------------------------------------------------------------
// last_error: (Optional) The error code associated with the last error will be written into this value
DQN_API Dqn_String Dqn_Win_LastError (Dqn_ArenaAllocator *arena, int *last_error);
DQN_API void Dqn_Win_DumpLastError(Dqn_ArenaAllocator *tmp_arena, Dqn_String prefix);
DQN_API Dqn_StringW Dqn_Win_UTF8ToWChar (Dqn_String src, Dqn_ArenaAllocator *arena);
DQN_API Dqn_String Dqn_Win_WCharToUTF8 (Dqn_StringW src, Dqn_ArenaAllocator *arena);
// size: (Optional) The size of the current directory string returned
// suffix: (Optional) A suffix to append to the current working directory
// suffix_size: (Optional) The size of the suffix to append
DQN_API Dqn_String Dqn_Win_CurrentDir (Dqn_ArenaAllocator *arena, Dqn_ArenaAllocator *tmp_arena, Dqn_String suffix);
DQN_API Dqn_StringW Dqn_Win_CurrentDirW (Dqn_ArenaAllocator *arena, Dqn_StringW suffix);
DQN_API Dqn_Array<Dqn_String> Dqn_Win_FolderFiles (Dqn_String path, Dqn_ArenaAllocator *arena, Dqn_ArenaAllocator *tmp_arena);
DQN_API Dqn_Array<Dqn_StringW> Dqn_Win_FolderFilesW(Dqn_StringW path, Dqn_ArenaAllocator *arena);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_TimedBlock
// ------------------------------------------------------------------------------------------------
// TimedBlock provides a extremely primitive way of measuring the duration of
// code blocks, by sprinkling DQN_TIMED_BLOCK_RECORD("record label"), you can
// measure the time between the macro and the next record call.
//
// Example: Record the duration of the for-loop below and print it at the end.
/*
int main()
{
DQN_TIMED_BLOCK_INIT("Profiling Region", 32); // name, records to allocate
DQN_TIMED_BLOCK_RECORD("a");
for (int unused1_ = 0; unused1_ < 1000000; unused1_++)
{
for (int unused2_ = 0; unused2_ < 1000000; unused2_++)
{
(void)unused1_;
(void)unused2_;
}
}
DQN_TIMED_BLOCK_RECORD("b");
DQN_TIMED_BLOCK_DUMP;
return 0;
}
*/
struct Dqn_TimedBlock
{
char const *label;
Dqn_u64 tick;
};
// Initialise a timing block region, see DQN_TIMED_BLOCK_INIT_SCOPED but does
// *not* automatically dump the timings, it must manually be caleld via
// DQN_TIMED_BLOCK_DUMP
#define DQN_TIMED_BLOCK_INIT(label, size) \
Dqn_TimedBlock timings_[size]; \
Dqn_usize timings_size_ = 0; \
DQN_TIMED_BLOCK_RECORD(label)
// Add a timing record to the previous timing block
// label: The label to give
#define DQN_TIMED_BLOCK_RECORD(label) timings_[timings_size_++] = {label, Dqn_PerfCounter_Now()}
// Dump the timing block via Dqn_Log
#define DQN_TIMED_BLOCK_DUMP \
DQN_ASSERT_MSG(timings_size_ < sizeof(timings_) / sizeof(timings_[0]), \
"Timings array indexed out-of-bounds, use a bigger size"); \
for (int timings_index_ = 0; timings_index_ < (timings_size_ - 1); timings_index_++) \
{ \
Dqn_TimedBlock t1 = timings_[timings_index_ + 0]; \
Dqn_TimedBlock t2 = timings_[timings_index_ + 1]; \
DQN_LOG_P("%s -> %s: %fms", t1.label, t2.label, Dqn_PerfCounter_Ms(t1.tick, t2.tick)); \
} \
\
if (timings_size_ >= 1) \
{ \
Dqn_TimedBlock t1 = timings_[0]; \
Dqn_TimedBlock t2 = timings_[timings_size_ - 1]; \
DQN_LOG_P("%s -> %s (total): %fms", t1.label, t2.label, Dqn_PerfCounter_Ms(t1.tick, t2.tick)); \
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_StringBuilder
// -------------------------------------------------------------------------------------------------
struct Dqn_StringBuilderBlock
{
char *mem;
Dqn_isize size;
Dqn_isize used;
Dqn_StringBuilderBlock *next;
};
// TODO(dqn): Rewrite this as string lists
Dqn_isize constexpr DQN_STRING_BUILDER_MIN_BLOCK_SIZE = DQN_KILOBYTES(4);
template <Dqn_isize N = DQN_KILOBYTES(16)>
struct Dqn_StringBuilder
{
Dqn_ArenaAllocator *arena;
char fixed_mem[N];
Dqn_StringBuilderBlock fixed_mem_block;
Dqn_StringBuilderBlock *last_mem_block;
};
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_InitWithArena (Dqn_StringBuilder<N> *builder, Dqn_ArenaAllocator *arena);
// Get the size required to build the string, it returns the length not including the null-terminator.
template <Dqn_isize N> DQN_API Dqn_isize Dqn_StringBuilder_GetSize (Dqn_StringBuilder<N> const *builder);
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_BuildToDest (Dqn_StringBuilder<N> const *builder, char *dest, Dqn_usize dest_size);
template <Dqn_isize N> DQN_API Dqn_String Dqn_StringBuilder_BuildStringWithArena (Dqn_StringBuilder<N> *builder, Dqn_ArenaAllocator *arena);
#define Dqn_StringBuilder_Build( builder, arena, len) Dqn_StringBuilder__Build(builder, arena, len DQN_CALL_SITE(""))
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_AppendFmtV (Dqn_StringBuilder<N> *builder, char const *fmt, va_list va);
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_AppendFmt (Dqn_StringBuilder<N> *builder, char const *fmt, ...);
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_Append (Dqn_StringBuilder<N> *builder, char const *str, Dqn_isize len = -1);
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_AppendString (Dqn_StringBuilder<N> *builder, Dqn_String const string);
template <Dqn_isize N> DQN_API void Dqn_StringBuilder_AppendChar (Dqn_StringBuilder<N> *builder, char ch);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_FixedArray
// -------------------------------------------------------------------------------------------------
#define DQN_FIXED_ARRAY_TEMPLATE template <typename T, int MAX_>
#define DQN_FIXED_ARRAY_TEMPLATE_DECL Dqn_FixedArray<T, MAX_>
DQN_FIXED_ARRAY_TEMPLATE struct Dqn_FixedArray
{
T data[MAX_];
Dqn_isize size;
T &operator[] (Dqn_isize i) { DQN_ASSERT_MSG(i >= 0 && i <= size, "%jd >= 0 && %jd < %jd", i, size); return data[i]; }
T *begin () { return data; }
T *end () { return data + size; }
T *operator+ (Dqn_isize i) { DQN_ASSERT_MSG(i >= 0 && i <= size, "%jd >= 0 && %jd < %jd", i, size); return data + i; }
T const &operator[] (Dqn_isize i) const { DQN_ASSERT_MSG(i >= 0 && i <= size, "%jd >= 0 && %jd < %jd", i, i, size); return data[i]; }
T const *begin () const { return data; }
T const *end () const { return data + size; }
T const *operator+ (Dqn_isize i) const { DQN_ASSERT_MSG(i >= 0 && i <= size, "%jd >= 0 && %jd < %jd", i, size); return data + i; }
};
DQN_FIXED_ARRAY_TEMPLATE DQN_API DQN_FIXED_ARRAY_TEMPLATE_DECL Dqn_FixedArray_Init (T const *item, int num);
DQN_FIXED_ARRAY_TEMPLATE DQN_API Dqn_isize Dqn_FixedArray_Max (DQN_FIXED_ARRAY_TEMPLATE_DECL const *);
// Calculate the index of a item from the its pointer
DQN_FIXED_ARRAY_TEMPLATE DQN_API Dqn_isize Dqn_FixedArray_GetIndex (DQN_FIXED_ARRAY_TEMPLATE_DECL const *a, T const *entry);
// return: The newly added item, nullptr if failed
DQN_FIXED_ARRAY_TEMPLATE DQN_API T *Dqn_FixedArray_Add (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T const *items, Dqn_isize num);
DQN_FIXED_ARRAY_TEMPLATE DQN_API T *Dqn_FixedArray_Add (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T const &item);
// Bump the size of the array and return a pointer to 'num' uninitialised elements
DQN_FIXED_ARRAY_TEMPLATE DQN_API T *Dqn_FixedArray_Make (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize num);
DQN_FIXED_ARRAY_TEMPLATE DQN_API void Dqn_FixedArray_Clear (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_ZeroMem zero_mem = Dqn_ZeroMem::No);
DQN_FIXED_ARRAY_TEMPLATE DQN_API void Dqn_FixedArray_EraseStable (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize index);
DQN_FIXED_ARRAY_TEMPLATE DQN_API void Dqn_FixedArray_EraseUnstable(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize index);
DQN_FIXED_ARRAY_TEMPLATE DQN_API void Dqn_FixedArray_Pop (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize num = 1, Dqn_ZeroMem zero_mem = Dqn_ZeroMem::No);
DQN_FIXED_ARRAY_TEMPLATE DQN_API T *Dqn_FixedArray_Peek (DQN_FIXED_ARRAY_TEMPLATE_DECL *a);
DQN_FIXED_ARRAY_TEMPLATE DQN_API T Dqn_FixedArray_PeekCopy (DQN_FIXED_ARRAY_TEMPLATE_DECL const *a);
template <typename T, int MAX_, typename IsEqual> DQN_API T *Dqn_FixedArray_Find (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, IsEqual IsEqualProc);
template <typename T, int MAX_, typename IsEqual> DQN_API Dqn_b32 Dqn_FixedArray_FindElseMake (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T **entry, IsEqual IsEqualProc);
DQN_FIXED_ARRAY_TEMPLATE DQN_API T *Dqn_FixedArray_Find (DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T *find);
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_List - Chunked Linked Lists
// -------------------------------------------------------------------------------------------------
template <typename T>
struct Dqn_ListChunk
{
T *data;
Dqn_isize size;
Dqn_isize count;
Dqn_ListChunk<T> *next;
};
template <typename T>
struct Dqn_ListIterator
{
Dqn_b32 init; // (Internal): True if Dqn_List_Iterate has been called at-least once on this iterator
Dqn_ListChunk<T> *chunk; // (Internal): The chunk that the iterator is reading from
Dqn_isize chunk_data_index; // (Internal): The index in the chunk the iterator is referencing
T *data; // (Read): Pointer to the data the iterator is referencing. Nullptr if invalid.
};
template <typename T>
struct Dqn_List
{
Dqn_ArenaAllocator *arena;
Dqn_isize count; // Cumulative count of all items made across all list chunks
Dqn_isize chunk_size; // When new ListChunk's are required, the minimum 'data' entries to allocate for that node.
Dqn_ListChunk<T> *head;
Dqn_ListChunk<T> *tail;
};
template <typename T> DQN_API Dqn_List<T> Dqn_List_InitWithArena(Dqn_ArenaAllocator *arena, Dqn_isize chunk_size = 128);
// Produce an iterator for the data in the list
/*
Dqn_List<int> list = {};
for (Dqn_ListIterator<int> it = {}; Dqn_List_Iterate(&list, &it);)
{
int *item = it.data;
}
*/
template <typename T> DQN_API Dqn_b32 Dqn_List_Iterate (Dqn_List<T> *list, Dqn_ListIterator<T> *iterator);
#define Dqn_List_TaggedMake( list, count, tag) Dqn_List__Make(list, count DQN_CALL_SITE(tag))
#define Dqn_List_Make( list, count) Dqn_List__Make(list, count DQN_CALL_SITE(""))
template <typename T> DQN_API T *Dqn_List__Make( Dqn_List<T> *list, Dqn_isize count DQN_CALL_SITE_ARGS);
// -------------------------------------------------------------------------------------------------
// NOTE: Hashing - Dqn_FNV1A[32|64]
// -------------------------------------------------------------------------------------------------
//
// Usage
//
// char buffer1[128] = {random bytes};
// char buffer2[128] = {random bytes};
// Dqn_u64 hash = Dqn_FNV1A64_Hash(buffer1, sizeof(buffer1));
// hash = Dqn_FNV1A64_Iterate(buffer2, sizeof(buffer2), hash); // subsequent hashing
//
#ifndef DQN_FNV1A32_SEED
#define DQN_FNV1A32_SEED 2166136261U
#endif
#ifndef DQN_FNV1A64_SEED
#define DQN_FNV1A64_SEED 14695981039346656037ULL
#endif
DQN_API Dqn_u32 Dqn_FNV1A32_Hash (void const *bytes, Dqn_isize size);
DQN_API Dqn_u64 Dqn_FNV1A64_Hash (void const *bytes, Dqn_isize size);
DQN_API Dqn_u32 Dqn_FNV1A32_Iterate (void const *bytes, Dqn_isize size, Dqn_u32 hash);
DQN_API Dqn_u64 Dqn_FNV1A64_Iterate (void const *bytes, Dqn_isize size, Dqn_u64 hash);
// -------------------------------------------------------------------------------------------------
// NOTE: Hashing - Dqn_MurmurHash3
// -------------------------------------------------------------------------------------------------
//
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
//
// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.
struct Dqn_MurmurHash3_128 { Dqn_u64 e[2]; };
DQN_API Dqn_u32 Dqn_MurmurHash3_x86_32 (void const *key, int len, Dqn_u32 seed);
DQN_API Dqn_MurmurHash3_128 Dqn_MurmurHash3_x64_128(void const *key, int len, Dqn_u32 seed);
#define DQN_MURMUR_HASH3_U128_AS_U64(key, len, seed) (Dqn_MurmurHash3_x64_128(key, len, seed).e[0])
// -------------------------------------------------------------------------------------------------
// NOTE: Template Implementation
// -------------------------------------------------------------------------------------------------
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Map Template Implementation
// -------------------------------------------------------------------------------------------------
template <typename T>
Dqn_Map<T> Dqn_Map_InitWithArena(Dqn_ArenaAllocator *arena, Dqn_isize size)
{
Dqn_Map<T> result = {};
result.arena = arena;
Dqn_isize final_size = size == 0 ? 4096 : size;
result.values = Dqn_ArenaAllocator_NewArray(arena, Dqn_MapEntry<T> *, final_size, Dqn_ZeroMem::Yes);
if (result.values) result.size = final_size;
return result;
}
template <typename T>
Dqn_MapEntry<T> *Dqn_Map_FindOrAdd(Dqn_Map<T> *map, Dqn_u64 hash, Dqn_MapCollideRule rule)
{
Dqn_isize index = hash % map->size;
Dqn_MapEntry<T> *result = map->values[index];
if (result)
{
if (rule == Dqn_MapCollideRule::Chain)
{
while (result->hash != hash)
{
if (result->next)
result = result->next;
else
{
map->chain_count++;
result->next = Dqn_ArenaAllocator_New(map->arena, Dqn_MapEntry<T>, Dqn_ZeroMem::Yes);
result = result->next;
break;
}
}
}
else if (rule == Dqn_MapCollideRule::Fail)
{
result = nullptr;
}
}
else
{
result = Dqn_ArenaAllocator_New(map->arena, Dqn_MapEntry<T>, Dqn_ZeroMem::Yes);
map->count++;
map->values[index] = result;
}
if (result)
result->hash = hash;
return result;
}
template <typename T>
Dqn_MapEntry<T> *Dqn_Map_Add(Dqn_Map<T> *map, Dqn_u64 hash, T &value, Dqn_MapCollideRule rule)
{
Dqn_MapEntry<T> *result = Dqn_Map_FindOrAdd(map, hash, rule);
if (result)
result->value = value;
return result;
}
template <typename T>
Dqn_MapEntry<T> *Dqn_Map_AddCopy(Dqn_Map<T> *map, Dqn_u64 hash, T const &value, Dqn_MapCollideRule rule)
{
Dqn_MapEntry<T> *result = Dqn_Map_FindOrAdd(map, hash, rule);
if (result)
result->value = value;
return result;
}
template <typename T>
Dqn_MapEntry<T> *Dqn_Map_Get(Dqn_Map<T> *map, Dqn_u64 hash)
{
Dqn_isize index = hash % map->size;
Dqn_MapEntry<T> *result = nullptr;
for (Dqn_MapEntry<T> *entry = map->values[index]; entry; entry = entry->next)
{
if (entry->hash == hash)
{
result = entry;
break;
}
}
return result;
}
template <typename T>
void Dqn_Map_Erase(Dqn_Map<T> *map, Dqn_u64 hash, Dqn_ZeroMem zero_mem)
{
Dqn_isize index = hash % map->size;
Dqn_MapEntry<T> **entry = &(map->values[index]);
Dqn_b32 is_chain_entry = *entry && (*entry)->next;
while ((*entry) && (*entry)->hash != hash)
entry = &((*entry)->next);
if ((*entry) && (*entry)->hash == hash)
{
Dqn_MapEntry<T> *erase_entry = *entry;
Dqn_MapEntry<T> *next = erase_entry->next;
(*entry) = next;
Dqn__ZeroMemBytes(erase_entry, sizeof(*erase_entry), zero_mem);
erase_entry->next = map->free_list;
map->free_list = erase_entry;
if (is_chain_entry) map->chain_count--;
else map->count--;
}
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_FixedString Template Implementation
// -------------------------------------------------------------------------------------------------
template <Dqn_isize MAX_>
DQN_API Dqn_FixedString<MAX_> Dqn_FixedString_Fmt(char const *fmt, ...)
{
Dqn_FixedString<MAX_> result = {};
va_list va;
va_start(va, fmt);
Dqn_FixedString_AppendFmtV(&result, fmt, va);
va_end(va);
return result;
}
template <Dqn_isize MAX_>
DQN_API Dqn_isize Dqn_FixedString_Max(Dqn_FixedString<MAX_> *)
{
Dqn_isize result = MAX_;
return result;
}
template <Dqn_isize MAX_>
DQN_API void Dqn_FixedString_Clear(Dqn_FixedString<MAX_> *str) { *str = {}; }
template <Dqn_isize MAX_>
DQN_API Dqn_b32 Dqn_FixedString_AppendFmtV(Dqn_FixedString<MAX_> *str, char const *fmt, va_list va)
{
va_list va2;
va_copy(va2, va);
Dqn_isize require = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, va) + 1;
Dqn_isize space = MAX_ - str->size;
Dqn_b32 result = require <= space;
if (!result)
{
DQN_LOG_W("Insufficient space in string: require=%I64d, space=%I64d", require, space);
return result;
}
str->size += STB_SPRINTF_DECORATE(vsnprintf)(str->data + str->size, static_cast<int>(space), fmt, va2);
va_end(va2);
return result;
}
template <Dqn_isize MAX_>
DQN_API Dqn_b32 Dqn_FixedString_AppendFmt(Dqn_FixedString<MAX_> *str, char const *fmt, ...)
{
va_list va;
va_start(va, fmt);
Dqn_b32 result = Dqn_FixedString_AppendFmtV(str, fmt, va);
va_end(va);
return result;
}
template <Dqn_isize MAX_>
DQN_API Dqn_b32 Dqn_FixedString_Append(Dqn_FixedString<MAX_> *str, char const *src, Dqn_isize size)
{
if (size == -1) size = DQN_CAST(Dqn_isize)Dqn_Str_Size(src);
Dqn_isize space = (MAX_ - 1 /*reserve byte for null terminator*/) - str->size;
Dqn_b32 result = size <= space;
if (!result)
{
DQN_LOG_W("Insufficient space in string: size=%I64d, space=%I64d", size, space);
return result;
}
DQN_MEMCOPY(str->data + str->size, src, size);
str->size += size;
str->str[str->size] = 0;
return result;
}
template <Dqn_isize MAX_>
DQN_API Dqn_b32 Dqn_FixedString_Append(Dqn_FixedString<MAX_> *str, Dqn_String src)
{
Dqn_b32 result = Dqn_FixedString_Append(str, src.str, src.size);
return result;
}
template <Dqn_isize MAX_>
DQN_API Dqn_String Dqn_FixedString_ToString(Dqn_FixedString<MAX_> const *str)
{
auto result = Dqn_String_Init(str->str, str->size);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_StringBuilder Template Implementation
// -------------------------------------------------------------------------------------------------
//
// NOTE: Dqn_StringBuilder Internal Functions
//
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder__LazyInitialise(Dqn_StringBuilder<N> *builder)
{
builder->fixed_mem_block.mem = builder->fixed_mem;
builder->fixed_mem_block.size = Dqn_ArrayCount(builder->fixed_mem);
builder->fixed_mem_block.used = 0;
builder->fixed_mem_block.next = nullptr;
builder->last_mem_block = &builder->fixed_mem_block;
}
template <Dqn_isize N>
DQN_API char *Dqn_StringBuilder__AllocateWriteBuffer(Dqn_StringBuilder<N> *builder, Dqn_isize size_required)
{
if (!builder->fixed_mem_block.mem)
{
DQN_ASSERT(!builder->last_mem_block);
Dqn_StringBuilder__LazyInitialise(builder);
}
Dqn_StringBuilderBlock *block = builder->last_mem_block;
Dqn_b32 new_block_needed = (block->size - block->used) < size_required;
if (new_block_needed)
{
Dqn_isize allocation_size = DQN_M_MAX(size_required, DQN_STRING_BUILDER_MIN_BLOCK_SIZE);
block = Dqn_ArenaAllocator_New(builder->arena, Dqn_StringBuilderBlock, Dqn_ZeroMem::No);
if (!block) return nullptr;
*block = {};
block->mem = DQN_CAST(char *)Dqn_ArenaAllocator_Allocate(builder->arena, allocation_size, alignof(char), Dqn_ZeroMem::No);
block->size = allocation_size;
builder->last_mem_block->next = block;
builder->last_mem_block = builder->last_mem_block->next;
}
char *result = block->mem + block->used;
block->used += size_required;
return result;
}
//
// NOTE: Dqn_StringBuilder Functions
//
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_InitWithArena(Dqn_StringBuilder<N> *builder, Dqn_ArenaAllocator *arena)
{
*builder = {};
builder->arena = arena;
Dqn_StringBuilder__LazyInitialise(builder);
}
template <Dqn_isize N>
DQN_API Dqn_isize Dqn_StringBuilder_GetSize(Dqn_StringBuilder<N> const *builder)
{
Dqn_isize result = 0;
for (Dqn_StringBuilderBlock const *block = &builder->fixed_mem_block;
block;
block = block->next)
{
result += block->used;
}
return result;
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_BuildToDest(Dqn_StringBuilder<N> const *builder, char *dest, Dqn_usize dest_size)
{
if (!dest) return;
if (dest_size == 1) { dest[0] = 0; return; }
char *ptr = dest;
char const *end = dest + dest_size;
Dqn_isize remaining_space = end - ptr;
for (Dqn_StringBuilderBlock const *block = &builder->fixed_mem_block;
block && remaining_space > 0;
block = block->next, remaining_space = end - ptr)
{
Dqn_isize num_bytes = block->used;
Dqn_isize bytes_to_copy = DQN_M_MIN(num_bytes, remaining_space);
DQN_MEMCOPY(ptr, block->mem, bytes_to_copy);
ptr += bytes_to_copy;
}
if (remaining_space > 0) ptr[ 0] = 0; // Append null terminator
else ptr[-1] = 0; // Oops ran out of space. Terminate the output prematurely.
}
template <Dqn_isize N>
DQN_API char *Dqn_StringBuilder__Build(Dqn_StringBuilder<N> *builder, Dqn_ArenaAllocator *arena, Dqn_isize *len DQN_CALL_SITE_ARGS)
{
Dqn_isize len_ = 0;
if (!len) len = &len_;
*len = Dqn_StringBuilder_GetSize(builder);
auto *result = DQN_CAST(char *)Dqn_ArenaAllocator__Allocate(arena, *len + 1, alignof(char), Dqn_ZeroMem::No DQN_CALL_SITE_ARGS_INPUT);
Dqn_StringBuilder_BuildToDest(builder, result, *len + 1);
return result;
}
template <Dqn_isize N>
DQN_API Dqn_String Dqn_StringBuilder_BuildStringWithArena(Dqn_StringBuilder<N> *builder, Dqn_ArenaAllocator *arena)
{
Dqn_isize size = 0;
char *string = Dqn_StringBuilder_Build(builder, arena, &size);
Dqn_String result = Dqn_String_Init(string, size);
return result;
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_AppendFmtV(Dqn_StringBuilder<N> *builder, char const *fmt, va_list va)
{
if (!fmt) return;
va_list va2;
va_copy(va2, va);
Dqn_isize len = stbsp_vsnprintf(nullptr, 0, fmt, va);
char *buf = Dqn_StringBuilder__AllocateWriteBuffer(builder, len + 1);
stbsp_vsnprintf(buf, static_cast<int>(len + 1), fmt, va2);
va_end(va2);
DQN_ASSERT(builder->last_mem_block->used >= 0);
builder->last_mem_block->used--; // stbsp_vsnprintf null terminates, back out the null-terminator from the mem block
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_AppendFmt(Dqn_StringBuilder<N> *builder, char const *fmt, ...)
{
va_list va;
va_start(va, fmt);
Dqn_StringBuilder_AppendFmtV(builder, fmt, va);
va_end(va);
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_Append(Dqn_StringBuilder<N> *builder, char const *str, Dqn_isize len)
{
if (!str) return;
if (len == -1) len = DQN_CAST(Dqn_isize)Dqn_Str_Size(str);
if (len == 0) return;
char *buf = Dqn_StringBuilder__AllocateWriteBuffer(builder, len);
DQN_MEMCOPY(buf, str, len);
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_AppendString(Dqn_StringBuilder<N> *builder, Dqn_String const string)
{
if (!string.str || string.size == 0) return;
char *buf = Dqn_StringBuilder__AllocateWriteBuffer(builder, string.size);
DQN_MEMCOPY(buf, string.str, string.size);
}
template <Dqn_isize N>
DQN_API void Dqn_StringBuilder_AppendChar(Dqn_StringBuilder<N> *builder, char ch)
{
char *buf = Dqn_StringBuilder__AllocateWriteBuffer(builder, 1);
*buf++ = ch;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_FixedArray Template Implementation
// -------------------------------------------------------------------------------------------------
template <typename T> void Dqn__EraseStableFromCArray(T *array, Dqn_isize size, Dqn_isize max, Dqn_isize index)
{
DQN_ASSERT(index >= 0 && index < size);
DQN_ASSERT(size <= max); (void)max;
Dqn_isize next_index = DQN_M_MIN(index + 1, size);
Dqn_usize bytes_to_copy = (size - next_index) * sizeof(T);
memmove(array + index, array + next_index, bytes_to_copy);
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API DQN_FIXED_ARRAY_TEMPLATE_DECL Dqn_FixedArray_Init(T const *item, int num)
{
DQN_FIXED_ARRAY_TEMPLATE_DECL result = {};
Dqn_FixedArray_Add(&result, item, num);
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API Dqn_isize Dqn_FixedArray_Max(DQN_FIXED_ARRAY_TEMPLATE_DECL const *)
{
Dqn_isize result = MAX_;
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API Dqn_isize Dqn_FixedArray_GetIndex(DQN_FIXED_ARRAY_TEMPLATE_DECL const *a, T const *entry)
{
DQN_ASSERT(entry >= a->begin() && entry <= a->end());
Dqn_isize result = a->end() - entry;
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T *Dqn_FixedArray_Add(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T const *items, Dqn_isize num)
{
DQN_ASSERT(a->size + num <= MAX_);
T *result = static_cast<T *>(DQN_MEMCOPY(a->data + a->size, items, sizeof(T) * num));
a->size += num;
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T *Dqn_FixedArray_Add(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T const &item)
{
DQN_ASSERT(a->size < MAX_);
a->data[a->size++] = item;
return &a->data[a->size - 1];
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T *Dqn_FixedArray_Make(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize num)
{
DQN_ASSERT(a->size + num <= MAX_);
T *result = a->data + a->size;
a->size += num;
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API void Dqn_FixedArray_Clear(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_ZeroMem zero_mem)
{
a->size = 0;
Dqn__ZeroMemBytes(a->data, sizeof(T) * MAX_, zero_mem);
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API void Dqn_FixedArray_EraseStable(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize index)
{
Dqn__EraseStableFromCArray<T>(a->data, a->size--, MAX_, index);
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API void Dqn_FixedArray_EraseUnstable(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize index)
{
DQN_ASSERT(index >= 0 && index < a->size);
if (--a->size == 0) return;
a->data[index] = a->data[a->size];
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API void Dqn_FixedArray_Pop(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, Dqn_isize num, Dqn_ZeroMem zero_mem)
{
DQN_ASSERT(a->size - num >= 0);
a->size -= num;
void * begin = a->data + a->size;
void * end = a->data + (a->size + num);
Dqn_isize bytes = DQN_CAST(Dqn_isize) end - DQN_CAST(Dqn_isize) begin;
Dqn__ZeroMemBytes(begin, bytes, zero_mem);
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T *Dqn_FixedArray_Peek(DQN_FIXED_ARRAY_TEMPLATE_DECL *a)
{
T *result = (a->size == 0) ? nullptr : a->data + (a->size - 1);
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T Dqn_FixedArray_PeekCopy(DQN_FIXED_ARRAY_TEMPLATE_DECL const *a)
{
DQN_ASSERT(a->size > 0);
T const *result = a->data + (a->size - 1);
return *result;
}
template <typename T, int MAX_, typename IsEqual>
DQN_API T *Dqn_FixedArray_Find(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, IsEqual IsEqualProc)
{
for (T &entry : (*a))
{
if (IsEqualProc(entry))
return &entry;
}
return nullptr;
}
// return: True if the entry was found, false if not- the entry is made using Dqn_FixedArray_Make() in this case
template <typename T, int MAX_, typename IsEqual>
DQN_API Dqn_b32 Dqn_FixedArray_FindElseMake(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T **entry, IsEqual IsEqualProc)
{
Dqn_b32 result = true;
T *search = Dqn_FixedArray_Find(a, IsEqualProc);
if (!search)
{
result = false;
search = Dqn_FixedArray_Make(a, 1);
}
*entry = search;
return result;
}
DQN_FIXED_ARRAY_TEMPLATE
DQN_API T *Dqn_FixedArray_Find(DQN_FIXED_ARRAY_TEMPLATE_DECL *a, T *find)
{
for (T &entry : (*a))
{
if (*find == entry)
return entry;
}
return nullptr;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Array Template Implementation
// -------------------------------------------------------------------------------------------------
template <typename T>
DQN_API Dqn_Array<T> Dqn_Array_InitWithMemory(T *memory, Dqn_isize max, Dqn_isize size)
{
Dqn_Array<T> result = {};
result.data = memory;
result.size = size;
result.max = max;
return result;
}
template <typename T>
DQN_API Dqn_Array<T> Dqn_Array__InitWithArenaNoGrow(Dqn_ArenaAllocator *arena, Dqn_isize max, Dqn_isize size, Dqn_ZeroMem zero_mem DQN_CALL_SITE_ARGS)
{
T *memory = DQN_CAST(T *)Dqn_ArenaAllocator__Allocate(arena, sizeof(T) * max, alignof(T), zero_mem DQN_CALL_SITE_ARGS_INPUT);
Dqn_Array<T> result = Dqn_Array_InitWithMemory(memory, max, size);
return result;
}
template <typename T>
DQN_API bool Dqn_Array__Reserve(Dqn_Array<T> *a, Dqn_isize size DQN_CALL_SITE_ARGS)
{
if (size <= a->size) return true;
if (!a->arena) return false;
T *new_ptr = DQN_CAST(T *)Dqn_ArenaAllocator__Allocate(a->arena, sizeof(T) * size, alignof(T), Dqn_ZeroMem::Yes DQN_CALL_SITE_ARGS_INPUT);
if (!new_ptr) return false;
if (a->data)
{
// NOTE(dqn): Realloc, I don't like and don't want to support. Use virtual arrays
DQN_MEMCOPY(new_ptr, a->data, a->size * sizeof(T));
}
a->data = new_ptr;
a->max = size;
return true;
}
template <typename T>
DQN_API bool Dqn_Array__GrowIfNeeded(Dqn_Array<T> *a, Dqn_isize num_to_add DQN_CALL_SITE_ARGS)
{
Dqn_isize new_size = a->size + num_to_add;
bool result = true;
if (new_size > a->max)
{
Dqn_isize num_items = DQN_M_MAX(4, DQN_M_MAX(new_size, (a->max * 2)));
result = Dqn_Array__Reserve(a, num_items DQN_CALL_SITE_ARGS_INPUT);
}
return result;
}
template <typename T>
DQN_API T *Dqn_Array__AddArray(Dqn_Array<T> *a, T const *items, Dqn_isize num DQN_CALL_SITE_ARGS)
{
if (!Dqn_Array__GrowIfNeeded(a, num DQN_CALL_SITE_ARGS_INPUT))
return nullptr;
T *result = static_cast<T *>(DQN_MEMCOPY(a->data + a->size, items, sizeof(T) * num));
a->size += num;
return result;
}
template <typename T>
DQN_API T *Dqn_Array__Add(Dqn_Array<T> *a, T const &item DQN_CALL_SITE_ARGS)
{
if (!Dqn_Array__GrowIfNeeded(a, 1 DQN_CALL_SITE_ARGS_INPUT))
return nullptr;
a->data[a->size++] = item;
return &a->data[a->size - 1];
}
template <typename T>
DQN_API T *Dqn_Array__Make(Dqn_Array<T> *a, Dqn_isize num DQN_CALL_SITE_ARGS)
{
if (!Dqn_Array__GrowIfNeeded(a, num DQN_CALL_SITE_ARGS_INPUT))
return nullptr;
T *result = a->data + a->size;
a->size += num;
return result;
}
template <typename T>
DQN_API void Dqn_Array_Clear(Dqn_Array<T> *a, Dqn_ZeroMem zero_mem)
{
a->size = 0;
Dqn__ZeroMemBytes(a->data, sizeof(T) * a->max, zero_mem);
}
template <typename T>
DQN_API void Dqn_Array_EraseStable(Dqn_Array<T> *a, Dqn_isize index)
{
Dqn__EraseStableFromCArray<T>(a->data, a->size--, a->max, index);
}
template <typename T>
DQN_API void Dqn_Array_EraseUnstable(Dqn_Array<T> *a, Dqn_isize index)
{
DQN_ASSERT(index >= 0 && index < a->size);
if (--a->size == 0) return;
a->data[index] = a->data[a->size];
}
template <typename T>
DQN_API void Dqn_Array_Pop(Dqn_Array<T> *a, Dqn_isize num, Dqn_ZeroMem zero_mem)
{
DQN_ASSERT(a->size - num >= 0);
a->size -= num;
void *begin = a->data + a->size;
void *end = a->data + (a->size + num);
Dqn_isize bytes = DQN_CAST(Dqn_isize) end - DQN_CAST(Dqn_isize) begin;
Dqn__ZeroMemBytes(begin, bytes, zero_mem);
}
template <typename T>
DQN_API T *Dqn_Array_Peek(Dqn_Array<T> *a)
{
T *result = (a->size == 0) ? nullptr : a->data + (a->size - 1);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_List Template Implementation
// -------------------------------------------------------------------------------------------------
template <typename T>
DQN_API Dqn_List<T> Dqn_List_InitWithArena(Dqn_ArenaAllocator *arena, Dqn_isize chunk_size)
{
Dqn_List<T> result = {};
result.arena = arena;
result.chunk_size = chunk_size;
return result;
}
template <typename T>
DQN_API T *Dqn_List__Make(Dqn_List<T> *list, Dqn_isize count DQN_CALL_SITE_ARGS)
{
if (list->chunk_size == 0)
list->chunk_size = 128;
if (!list->tail || (list->tail->count + count) > list->tail->size)
{
auto *tail = (Dqn_ListChunk<T> * )Dqn_ArenaAllocator__Allocate(list->arena, sizeof(Dqn_ListChunk<T>), alignof(Dqn_ListChunk<T>), Dqn_ZeroMem::Yes DQN_CALL_SITE_ARGS_INPUT);
if (!tail)
return nullptr;
Dqn_isize items = DQN_M_MAX(list->chunk_size, count);
tail->data = (T * )Dqn_ArenaAllocator__Allocate(list->arena, sizeof(T) * items, alignof(T), Dqn_ZeroMem::Yes DQN_CALL_SITE_ARGS_INPUT);
tail->size = items;
if (!tail->data)
return nullptr;
if (list->tail)
list->tail->next = tail;
list->tail = tail;
if (!list->head)
list->head = list->tail;
}
T *result = list->tail->data + list->tail->count;
list->tail->count += count;
list->count += count;
return result;
}
template <typename T>
Dqn_b32 Dqn_List_Iterate(Dqn_List<T> *list, Dqn_ListIterator<T> *iterator)
{
Dqn_b32 result = false;
if (!iterator->init)
{
*iterator = {};
iterator->chunk = list->head;
iterator->init = true;
}
if (iterator->chunk)
{
if (iterator->chunk_data_index >= iterator->chunk->count)
{
iterator->chunk = iterator->chunk->next;
iterator->chunk_data_index = 0;
}
if (iterator->chunk)
{
iterator->data = iterator->chunk->data + iterator->chunk_data_index++;
result = true;
}
}
if (!iterator->chunk)
{
DQN_ASSERT(result == false);
}
return result;
}
#if defined(DQN_COMPILER_W32_MSVC)
#pragma warning(pop)
#endif
#endif // DQN_H
// -------------------------------------------------------------------------------------------------
// NOTE: Implementation
// -------------------------------------------------------------------------------------------------
#if defined(DQN_IMPLEMENTATION)
#include <stdio.h> // fprintf, FILE, stdout, stderr
#include <time.h> // Dqn_EpochTimeToLocalDate
#if defined(DQN_OS_WIN32)
#if !defined(DQN_NO_WIN32_SHWLAPI_H)
#pragma comment(lib, "shlwapi.lib")
extern "C" int PathFileExistsA(char const *path);
#endif // !defined(DQN_NO_WIN32_SHWLAPI_H)
#if !defined(DQN_NO_WIN32_MINIMAL_HEADER)
#pragma comment(lib, "shlwapi.lib")
// Taken from Windows.h
// ---------------------------------------------------------------------
// Typedefs
// ---------------------------------------------------------------------
typedef int BOOL;
typedef void * HWND;
typedef void * HMODULE;
typedef void * HANDLE;
// ---------------------------------------------------------------------
// Defines
// ---------------------------------------------------------------------
#define MAX_PATH 260
// NOTE: Wait/Synchronization
#define INFINITE 0xFFFFFFFF // Infinite timeout
// NOTE: FormatMessageA
#define FORMAT_MESSAGE_FROM_SYSTEM 0x00001000
#define FORMAT_MESSAGE_IGNORE_INSERTS 0x00000200
#define MAKELANGID(p, s) ((((unsigned short )(s)) << 10) | (unsigned short )(p))
#define SUBLANG_DEFAULT 0x01 // user default
#define LANG_NEUTRAL 0x00
// NOTE: MultiByteToWideChar
#define CP_UTF8 65001 // UTF-8 translation
// NOTE: VirtualAlloc
// NOTE: Allocation Type
#define MEM_RESERVE 0x00002000
#define MEM_COMMIT 0x00001000
// NOTE: Free Type
#define MEM_RELEASE 0x00008000
// NOTE: Protect
#define PAGE_READWRITE 0x04
// NOTE: FindFirstFile
#define INVALID_HANDLE_VALUE ((HANDLE)(long *)-1)
#define FIND_FIRST_EX_LARGE_FETCH 0x00000002
#define FILE_ATTRIBUTE_DIRECTORY 0x00000010
#define FILE_ATTRIBUTE_READONLY 0x00000001
#define FILE_ATTRIBUTE_HIDDEN 0x00000002
// ---------------------------------------------------------------------
// Data Structures
// ---------------------------------------------------------------------
typedef union {
struct {
DWORD LowPart;
DWORD HighPart;
} DUMMYSTRUCTNAME;
struct {
DWORD LowPart;
DWORD HighPart;
} u;
Dqn_u64 QuadPart;
} ULARGE_INTEGER;
typedef struct
{
DWORD dwLowDateTime;
DWORD dwHighDateTime;
} FILETIME;
typedef struct
{
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
} WIN32_FILE_ATTRIBUTE_DATA;
typedef enum
{
GetFileExInfoStandard,
GetFileExMaxInfoLevel
} GET_FILEEX_INFO_LEVELS;
typedef struct {
DWORD nLength;
void *lpSecurityDescriptor;
bool bInheritHandle;
} SECURITY_ATTRIBUTES;
typedef struct {
union {
DWORD dwOemId; // Obsolete field...do not use
struct {
Dqn_u16 wProcessorArchitecture;
Dqn_u16 wReserved;
} DUMMYSTRUCTNAME;
} DUMMYUNIONNAME;
DWORD dwPageSize;
void *lpMinimumApplicationAddress;
void *lpMaximumApplicationAddress;
DWORD *dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
Dqn_u16 wProcessorLevel;
Dqn_u16 wProcessorRevision;
} SYSTEM_INFO;
typedef struct {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME;
typedef struct {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReserved0;
DWORD dwReserved1;
wchar_t cFileName[MAX_PATH];
wchar_t cAlternateFileName[14];
#ifdef _MAC
DWORD dwFileType;
DWORD dwCreatorType;
WORD wFinderFlags;
#endif
} WIN32_FIND_DATAW;
typedef enum {
FindExInfoStandard,
FindExInfoBasic,
FindExInfoMaxInfoLevel,
} FINDEX_INFO_LEVELS;
typedef enum {
FindExSearchNameMatch,
FindExSearchLimitToDirectories,
FindExSearchLimitToDevices,
FindExSearchMaxSearchOp
} FINDEX_SEARCH_OPS;
// ---------------------------------------------------------------------
// Functions
// ---------------------------------------------------------------------
extern "C"
{
BOOL CopyFileA (char const *existing_file_name, char const *new_file_name, BOOL fail_if_exists);
BOOL FreeLibrary (void *lib_module);
BOOL QueryPerformanceCounter (LARGE_INTEGER *performance_count);
BOOL QueryPerformanceFrequency(LARGE_INTEGER *frequency);
BOOL ReleaseSemaphore (void *semaphore, long release_count, long *prev_count);
BOOL VirtualFree (void *address, size_t size, DWORD free_type);
DWORD FormatMessageA (DWORD flags, void *source, DWORD message_id, DWORD language_id, char *buffer, DWORD size, va_list *args);
DWORD GetFileAttributesExA (char const *file_name, GET_FILEEX_INFO_LEVELS info_level, WIN32_FILE_ATTRIBUTE_DATA *file_information);
DWORD GetLastError ();
DWORD WaitForSingleObject (void *handle, DWORD milliseconds);
unsigned int GetWindowModuleFileNameA (void *hwnd, char *file_name, unsigned int file_name_max);
void GetSystemInfo (SYSTEM_INFO *system_info);
void *CreateSemaphoreA (SECURITY_ATTRIBUTES *security_attributes, long initial_count, long max_count, char *lpName);
void *CreateThread (SECURITY_ATTRIBUTES *thread_attributes, size_t stack_size, DWORD (*start_function)(void *), void *user_context, DWORD creation_flags, DWORD *thread_id);
void *GetProcAddress (void *hmodule, char const *proc_name);
void *LoadLibraryA (char const *file_name);
void *VirtualAlloc (void *address, size_t size, DWORD allocation_type, DWORD protect);
int MultiByteToWideChar (unsigned int CodePage, DWORD dwFlags, char const *lpMultiByteStr, int cbMultiByte, wchar_t *lpWideCharStr, int cchWideChar);
int WideCharToMultiByte (unsigned int CodePage, DWORD dwFlags, wchar_t const *lpWideCharStr, int cchWideChar, char *lpMultiByteStr, int cbMultiByte, char const *lpDefaultChar, bool *lpUsedDefaultChar);
void GetSystemTime (SYSTEMTIME *lpSystemTime);
void GetLocalTime (SYSTEMTIME *lpSystemTime);
DWORD GetCurrentDirectoryW (DWORD nBufferLength, wchar_t *lpBuffer);
bool FindNextFileW (HANDLE hFindFile, WIN32_FIND_DATAW *lpFindFileData);
HANDLE FindFirstFileExW (const wchar_t *lpFileName, FINDEX_INFO_LEVELS fInfoLevelId, void *lpFindFileData, FINDEX_SEARCH_OPS fSearchOp, void *lpSearchFilter, DWORD dwAdditionalFlags);
}
#endif // !defined(DQN_NO_WIN32_MINIMAL_HEADER)
#else // !defined(DQN_OS_WIN32)
#include <unistd.h> // access
#endif
Dqn_Lib dqn__lib;
DQN_API void Dqn__ZeroMemBytes(void *ptr, Dqn_usize count, Dqn_ZeroMem zero_mem)
{
if (zero_mem == Dqn_ZeroMem::Yes)
{
DQN_MEMSET(ptr, 0, count);
}
else
{
#if defined(DQN_MEMZERO_DEBUG_BYTE)
DQN_MEMSET(ptr, DQN_MEMZERO_DEBUG_BYTE, count);
#endif
}
}
// -------------------------------------------------------------------------------------------------
// NOTE: Intrinsics
// -------------------------------------------------------------------------------------------------
#if defined(DQN_COMPILER_GCC) || defined(DQN_COMPILER_CLANG)
#include <cpuid.h>
#endif
// -------------------------------------------------------------------------------------------------
// NOTE: CPUID
// -------------------------------------------------------------------------------------------------
Dqn_CPUIDRegisters Dqn_CPUID(int function_id)
{
Dqn_CPUIDRegisters result = {};
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
__cpuid(DQN_CAST(int *)result.array, function_id);
#elif defined(DQN_COMPILER_GCC) || defined(DQN_COMPILER_CLANG)
__get_cpuid(function_id, &result.array[0] /*eax*/, &result.array[1] /*ebx*/, &result.array[2] /*ecx*/ , &result.array[3] /*edx*/);
#else
#error "Compiler not supported"
#endif
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_TicketMutex
// -------------------------------------------------------------------------------------------------
void Dqn_TicketMutex_Begin(Dqn_TicketMutex *mutex)
{
unsigned int ticket = Dqn_AtomicAddU32(&mutex->ticket, 1);
Dqn_TicketMutex_BeginTicket(mutex, ticket);
}
void Dqn_TicketMutex_End(Dqn_TicketMutex *mutex)
{
Dqn_AtomicAddU32(&mutex->serving, 1);
}
unsigned int Dqn_TicketMutex_MakeTicket(Dqn_TicketMutex *mutex)
{
unsigned int result = Dqn_AtomicAddU32(&mutex->ticket, 1);
return result;
}
void Dqn_TicketMutex_BeginTicket(const Dqn_TicketMutex *mutex, unsigned int ticket)
{
DQN_ASSERT_MSG(ticket <= mutex->serving,
"Mutex skipped ticket? Was ticket generated by the correct mutex via MakeTicket? ticket = %u, "
"mutex->serving = %u",
ticket,
mutex->serving);
while(ticket != mutex->serving)
{
// NOTE: Use spinlock intrinsic
_mm_pause();
}
}
Dqn_b32 Dqn_TicketMutex_CanLock(const Dqn_TicketMutex *mutex, unsigned int ticket)
{
Dqn_b32 result = (ticket == mutex->serving);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Fmt Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_isize Dqn_FmtVLenNoNullTerminator(char const *fmt, va_list args)
{
va_list args_copy;
va_copy(args_copy, args);
Dqn_isize result = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, args_copy);
va_end(args_copy);
return result;
}
DQN_API Dqn_isize Dqn_FmtLenNoNullTerminator(char const *fmt, ...)
{
va_list args;
va_start(args, fmt);
Dqn_isize result = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, args);
va_end(args);
return result;
}
DQN_API Dqn_isize Dqn_FmtVLen(char const *fmt, va_list args)
{
va_list args_copy;
va_copy(args_copy, args);
Dqn_isize result = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, args_copy) + 1;
va_end(args_copy);
return result;
}
DQN_API Dqn_isize Dqn_FmtLen(char const *fmt, ...)
{
va_list args;
va_start(args, fmt);
Dqn_isize result = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, args) + 1;
va_end(args);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Log
// -------------------------------------------------------------------------------------------------
DQN_API void Dqn_LogV(Dqn_LogType type,
void * user_data,
char const *file,
Dqn_usize file_len,
char const *func,
Dqn_usize func_len,
Dqn_usize line,
char const *fmt,
va_list va)
{
(void)user_data;
Dqn_isize file_name_len = 0;
char const *file_name = Dqn_Str_FileNameFromPath(file, file_len, &file_name_len);
FILE *handle = (type == Dqn_LogType::Error) ? stderr : stdout;
#if _MSC_VER
SYSTEMTIME sys_time;
GetLocalTime(&sys_time);
fprintf(handle,
"[%02d:%02d:%02d|%s|%.*s|%05I64u|%.*s] ",
sys_time.wHour,
sys_time.wMinute,
sys_time.wSecond,
Dqn_LogTypeString[DQN_CAST(int) type],
DQN_CAST(int)file_name_len,
file_name,
line,
DQN_CAST(int)func_len,
func);
#else
fprintf(handle,
"[%s|%.*s|%05I64u|%.*s] ",
Dqn_LogTypeString[DQN_CAST(int) type],
file_name_len,
file_name,
line,
DQN_CAST(int)func_len,
func);
#endif
// NOTE: Use the callback version of stb_sprintf to allow us to chunk logs and print arbitrary
// sized format strings without needing to size it up first.
auto stb_vsprintf_callback = [](char const *buf, void *user, int len) -> char * {
fprintf(DQN_CAST(FILE *)user, "%.*s", len, buf);
return DQN_CAST(char *)buf;
};
char stb_buffer[STB_SPRINTF_MIN * 2] = {};
STB_SPRINTF_DECORATE(vsprintfcb)(stb_vsprintf_callback, handle, stb_buffer, fmt, va);
fputc('\n', handle);
}
DQN_API void Dqn_Log(Dqn_LogType type, void *user_data, char const *file, Dqn_usize file_len, char const *func, Dqn_usize func_len, Dqn_usize line, char const *fmt, ...)
{
va_list va;
va_start(va, fmt);
Dqn_LogV(type, user_data, file, file_len, func, func_len, line, fmt, va);
va_end(va);
}
DQN_API void Dqn_Log_SetCallback(Dqn_LogProc *proc, void *user_data)
{
dqn__lib.LogCallback = proc;
dqn__lib.log_user_data = user_data;
}
// -------------------------------------------------------------------------------------------------
//
// Dqn_Align*
//
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_uintptr Dqn_AlignAddressEnsuringSpace(Dqn_uintptr address, Dqn_u8 alignment)
{
Dqn_uintptr remainder = address % alignment;
Dqn_uintptr offset_to_align = alignment - remainder;
Dqn_uintptr result = address + offset_to_align;
DQN_ASSERT(result % alignment == 0);
DQN_ASSERT(result >= address);
DQN_ASSERT(offset_to_align >= 1 && offset_to_align <= alignment);
return result;
}
DQN_API Dqn_uintptr Dqn_AlignAddress(Dqn_uintptr address, Dqn_u8 alignment)
{
Dqn_uintptr result = address;
if (alignment > 0)
{
Dqn_uintptr remainder = result % alignment;
if (remainder > 0)
{
Dqn_uintptr offset_to_align = alignment - remainder;
result += offset_to_align;
}
}
return result;
}
// -------------------------------------------------------------------------------------------------
//
// Dqn_PointerMetadata
//
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_isize Dqn_PointerMetadata_SizeRequired(Dqn_isize size, Dqn_u8 alignment)
{
DQN_ASSERT(alignment > 0);
if (alignment <= 0) alignment = 1;
Dqn_isize result = size + DQN_CAST(Dqn_i8)(alignment - 1) + DQN_CAST(Dqn_isize)sizeof(Dqn_PointerMetadata);
return result;
}
DQN_API char *Dqn_PointerMetadata_Init(void *ptr, Dqn_isize size, Dqn_u8 alignment)
{
DQN_ASSERT_MSG(alignment == 1 || (alignment & 1) == 0, "Alignment must be a power of 2, %u", alignment);
// NOTE: Given a pointer, it can misaligned by up to (Alignment - 1) bytes.
// After calculating the offset to apply on the aligned ptr, we store the
// allocation metadata right before the ptr for convenience, so that we just
// need to walk back sizeof(metadata) bytes to get to the metadata from the
// pointer.
// [Metadata Is Stored Here]
// [Raw Pointer] -> [Metadata Storage] [Unaligned Pointer] [Offset to Align Pointer] [Aligned Pointer]
// NOTE: In the scenario where the pointer is already aligned after the
// [Metadata Storage] bytes, we use the bytes allocated for the metadata
// storage, instead of storing it into the offset storage bytes.
// [Metadata Is Stored Here]
// [Raw Pointer] -> [Metadata Storage] [Aligned Pointer]
// Offset is [0->Alignment-1] bytes from the Unaligned ptr.
auto raw_ptr = DQN_CAST(uintptr_t) ptr;
auto unaligned_ptr = raw_ptr + sizeof(Dqn_PointerMetadata);
auto result = DQN_CAST(uintptr_t) unaligned_ptr;
if ((unaligned_ptr % alignment) > 0)
{
uintptr_t unaligned_to_aligned_offset = alignment - (unaligned_ptr % alignment);
result += unaligned_to_aligned_offset;
}
DQN_ASSERT(result % alignment == 0);
DQN_ASSERT(result >= raw_ptr);
ptrdiff_t difference = DQN_CAST(ptrdiff_t)result - DQN_CAST(ptrdiff_t)raw_ptr;
DQN_ASSERT(difference <= DQN_CAST(Dqn_u8)-1);
auto *metadata_ptr = DQN_CAST(Dqn_PointerMetadata *)(result - sizeof(Dqn_PointerMetadata));
metadata_ptr->alignment = alignment;
metadata_ptr->offset = DQN_CAST(Dqn_u8)difference;
metadata_ptr->size = size;
return DQN_CAST(char *)result;
}
DQN_API Dqn_PointerMetadata Dqn_PointerMetadata_Get(void *ptr)
{
auto *aligned_ptr = DQN_CAST(char *) ptr;
auto result = *DQN_CAST(Dqn_PointerMetadata *)(aligned_ptr - sizeof(Dqn_PointerMetadata));
return result;
}
DQN_API char *Dqn_PointerMetadata_GetRawPointer(void *ptr)
{
Dqn_PointerMetadata metadata = Dqn_PointerMetadata_Get(ptr);
char *result = DQN_CAST(char *) ptr - metadata.offset;
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_AllocationTracer
// -------------------------------------------------------------------------------------------------
void Dqn_AllocationTracer_Add(Dqn_AllocationTracer *tracer, void *ptr, Dqn_usize size DQN_CALL_SITE_ARGS)
{
#if DQN_ALLOCATION_TRACING
if (!tracer) return;
Dqn_AllocationTrace trace = {};
trace.ptr = ptr;
trace.size = size;
trace.file = file_;
trace.func = func_;
trace.line = line_;
trace.msg = msg_;
Dqn_TicketMutex_Begin(&tracer->mutex);
#if 0 // TODO(dqn): We need to revisit this
if (!trace->map.values)
{
trace->arena = Dqn_ArenaAllocator_InitWithDefaultHeap();
trace->map = Dqn_Map_InitWithArena(&trace->arena, 16192);
}
#endif
Dqn_b32 added = Dqn_Map_Add(&tracer->map, DQN_CAST(Dqn_u64) ptr, trace, Dqn_MapCollideRule::Chain);
if (!added)
{
// Dqn_AllocationTrace *other = Dqn_Map_Get(&tracer->table, DQN_CAST(Dqn_u64) ptr);
DQN_ASSERT_MSG(added, "Hash table collision on %Ix", ptr);
}
Dqn_TicketMutex_End(&tracer->mutex);
#else
(void)tracer; (void)ptr; (void)size;
#endif
}
void Dqn_AllocationTracer_Remove(Dqn_AllocationTracer *tracer, void *ptr)
{
#if DQN_ALLOCATION_TRACING
if (!tracer) return;
Dqn_TicketMutex_Begin(&tracer->mutex);
Dqn_AllocationTrace *trace = Dqn_Map_Get(&tracer->map, DQN_CAST(Dqn_u64) ptr);
DQN_ASSERT_MSG(trace->ptr == ptr, "(trace->ptr = %Ix, raw_ptr = %Ix", trace->ptr, ptr);
Dqn_Map_Erase(&tracer->map, DQN_CAST(Dqn_u64) ptr);
Dqn_TicketMutex_End(&tracer->mutex);
#else
(void)tracer; (void)ptr;
#endif
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_CRTAllocator
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_CRTAllocator Dqn_CRTAllocator_InitWithProcs(Dqn_CRTAllocator_MallocProc *malloc_proc, Dqn_CRTAllocator_ReallocProc *realloc_proc, Dqn_CRTAllocator_FreeProc *free_proc)
{
Dqn_CRTAllocator result = {};
result.malloc = malloc_proc;
result.realloc = realloc_proc;
result.free = free_proc;
return result;
}
DQN_API void *Dqn_CRTAllocator__Malloc(Dqn_CRTAllocator *allocator, Dqn_usize size DQN_CALL_SITE_ARGS)
{
void *result = allocator->malloc ? allocator->malloc(size) : DQN_MALLOC(size);
if (result)
{
Dqn_AtomicAddU64(&allocator->malloc_bytes, size);
Dqn_AtomicAddU64(&allocator->malloc_count, 1ULL);
Dqn_AllocationTracer_Add(allocator->tracer, result, size DQN_CALL_SITE_ARGS_INPUT);
}
return result;
}
DQN_API void *Dqn_CRTAllocator__Realloc(Dqn_CRTAllocator *allocator, void *ptr, Dqn_usize size DQN_CALL_SITE_ARGS)
{
void *result = allocator->realloc ? allocator->realloc(ptr, size) : DQN_REALLOC(ptr, size);
if (result)
{
Dqn_AtomicAddU64(&allocator->realloc_bytes, size);
Dqn_AtomicAddU64(&allocator->realloc_count, 1ULL);
Dqn_AllocationTracer_Add(allocator->tracer, result, size DQN_CALL_SITE_ARGS_INPUT);
if (result != ptr) Dqn_AllocationTracer_Remove(allocator->tracer, ptr);
}
return result;
}
DQN_API void Dqn_CRTAllocator__Free(Dqn_CRTAllocator *allocator, void *ptr)
{
if (ptr)
{
Dqn_AtomicAddU64(&allocator->free_count, 1ULL);
Dqn_AllocationTracer_Remove(allocator->tracer, ptr);
}
allocator->free ? allocator->free(ptr) : DQN_FREE(ptr);
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_String
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_String Dqn_String_Init(char const *string, Dqn_isize size)
{
Dqn_String result = {};
result.str = DQN_CAST(char *)string;
result.size = size;
result.cap = result.size;
return result;
}
DQN_API Dqn_String Dqn_String_InitMemory(char *buf, Dqn_isize capacity)
{
DQN_ASSERT(capacity > 0);
Dqn_String result = {};
result.str = buf;
result.size = 0;
result.cap = capacity - 1; // Reserve 1 byte for null terminator
return result;
}
DQN_API Dqn_String Dqn_String__Fmt(Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS, char const *fmt, ...)
{
va_list va;
va_start(va, fmt);
Dqn_String result = Dqn_String__FmtV(arena, fmt, va DQN_CALL_SITE_ARGS_INPUT);
va_end(va);
return result;
}
DQN_API Dqn_String Dqn_String__FmtV(Dqn_ArenaAllocator *arena, char const *fmt, va_list va DQN_CALL_SITE_ARGS)
{
Dqn_String result = {};
va_list va2;
va_copy(va2, va);
result.size = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, va);
result.str = DQN_CAST(char *)Dqn_ArenaAllocator__Allocate(arena, sizeof(char) * (result.size + 1), alignof(char), Dqn_ZeroMem::No DQN_CALL_SITE_ARGS_INPUT);
if (result.str)
{
STB_SPRINTF_DECORATE(vsnprintf)(result.str, Dqn_Safe_TruncateISizeToInt(result.size + 1), fmt, va2);
result.str[result.size] = 0;
result.cap = result.size;
}
va_end(va2);
return result;
}
DQN_API Dqn_String Dqn_String__Allocate(Dqn_ArenaAllocator *arena, Dqn_isize size, Dqn_ZeroMem zero_mem DQN_CALL_SITE_ARGS)
{
Dqn_String result = {};
result.str = DQN_CAST(char *)Dqn_ArenaAllocator__Allocate(arena, size + 1, alignof(char), zero_mem DQN_CALL_SITE_ARGS_INPUT);
result.cap = size;
return result;
}
DQN_API Dqn_String Dqn_String__Copy(Dqn_String const src, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS)
{
Dqn_String result = src;
result.str = DQN_CAST(char *)Dqn_ArenaAllocator__Allocate(arena, result.size + 1, alignof(char), Dqn_ZeroMem::No DQN_CALL_SITE_ARGS_INPUT);
result.cap = result.size;
DQN_MEMCOPY(result.str, src.str, DQN_CAST(size_t)result.size);
result.str[result.size] = 0;
return result;
}
DQN_API Dqn_String Dqn_String_TrimWhitespaceAround(Dqn_String const src)
{
Dqn_String result = {};
result.str = DQN_CAST(char *)Dqn_Str_TrimWhitespaceAround(src.str, src.size, &result.size);
result.cap = result.size;
return result;
}
DQN_API Dqn_b32 operator==(Dqn_String const &lhs, Dqn_String const &rhs)
{
Dqn_b32 result = lhs.size == rhs.size && (DQN_MEMCMP(lhs.str, rhs.str, lhs.size) == 0);
return result;
}
DQN_API Dqn_b32 Dqn_String_AppendFmtV(Dqn_String *str, char const *fmt, va_list va)
{
va_list va2;
va_copy(va2, va);
Dqn_isize require = STB_SPRINTF_DECORATE(vsnprintf)(nullptr, 0, fmt, va);
Dqn_isize space = str->cap - str->size;
Dqn_b32 result = require <= space;
if (!result)
{
DQN_LOG_W("Insufficient space in string: require=%I64d, space=%I64d", require, space);
return result;
}
str->size += STB_SPRINTF_DECORATE(vsnprintf)(str->str + str->size, DQN_CAST(int)(space + 1 /*null terminator*/), fmt, va2);
va_end(va2);
return result;
}
DQN_API Dqn_b32 Dqn_String_AppendFmt(Dqn_String *str, char const *fmt, ...)
{
va_list va;
va_start(va, fmt);
Dqn_b32 result = Dqn_String_AppendFmtV(str, fmt, va);
va_end(va);
return result;
}
DQN_API Dqn_b32 Dqn_String_Eq(Dqn_String const lhs, Dqn_String const rhs, Dqn_StringEqCase eq_case)
{
Dqn_b32 result = false;
if (lhs.size == rhs.size)
{
if (eq_case == Dqn_StringEqCase::Sensitive)
result = (DQN_MEMCMP(lhs.str, rhs.str, DQN_CAST(size_t)lhs.size) == 0);
else
{
result = true;
for (Dqn_isize index = 0; index < lhs.size && result; index++)
result = (Dqn_Char_ToLower(lhs.str[index]) == Dqn_Char_ToLower(rhs.str[index]));
}
}
return result;
}
DQN_API Dqn_b32 Dqn_String_EqInsensitive(Dqn_String const lhs, Dqn_String const rhs)
{
Dqn_b32 result = Dqn_String_Eq(lhs, rhs, Dqn_StringEqCase::Insensitive);
return result;
}
DQN_API Dqn_b32 Dqn_String_StartsWith(Dqn_String string, Dqn_String prefix, Dqn_StringEqCase eq_case)
{
Dqn_b32 result = false;
if (prefix.size > string.size)
return result;
Dqn_String substring = {string.str, prefix.size};
result = Dqn_String_Eq(substring, prefix, eq_case);
return result;
}
DQN_API Dqn_b32 Dqn_String_StartsWithInsensitive(Dqn_String string, Dqn_String prefix)
{
Dqn_b32 result = Dqn_String_StartsWith(string, prefix, Dqn_StringEqCase::Insensitive);
return result;
}
DQN_API Dqn_Array<Dqn_String> Dqn_String_Split(Dqn_String src, Dqn_ArenaAllocator *arena)
{
enum StringSplitStage
{
StringSplitStage_Enumerate,
StringSplitStage_Write,
StringSplitStage_Count,
};
Dqn_Array<Dqn_String> result = {};
int split_index = 0;
int split_count = 0;
for (int stage = StringSplitStage_Enumerate;
stage < StringSplitStage_Count;
stage++)
{
char const *begin = src.str;
char const *end = src.str;
if (stage == StringSplitStage_Write)
result = Dqn_Array_InitWithArenaNoGrow(arena, Dqn_String, split_count, 0, Dqn_ZeroMem::No);
for (;;)
{
while (end[0] != '\r' && end[0] != '\n' && end[0] != 0)
end++;
if (end[0] == 0)
break;
auto split = Dqn_String_Init(begin, end - begin);
begin = end + 1;
end = begin;
if (split.size == 0)
continue;
else
{
if (stage == StringSplitStage_Enumerate) split_count++;
else result[split_index++] = split;
}
}
}
DQN_ASSERT(split_count == split_index);
return result;
}
DQN_API Dqn_u64 Dqn_String_ToU64(Dqn_String str)
{
Dqn_u64 result = Dqn_Str_ToU64(str.str, DQN_CAST(int)str.size);
return result;
}
DQN_API Dqn_i64 Dqn_String_ToI64(Dqn_String str)
{
Dqn_i64 result = Dqn_Str_ToI64(str.str, DQN_CAST(int)str.size);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_ArenaAllocator
// -------------------------------------------------------------------------------------------------
DQN_API void *Dqn_ArenaAllocator__Copy(Dqn_ArenaAllocator *arena, void *src, Dqn_isize size, Dqn_u8 alignment DQN_CALL_SITE_ARGS)
{
void *result = Dqn_ArenaAllocator__Allocate(arena, size, alignment, Dqn_ZeroMem::No DQN_CALL_SITE_ARGS_INPUT);
DQN_MEMCOPY(result, src, size);
return result;
}
DQN_API void *Dqn_ArenaAllocator__CopyNullTerminate(Dqn_ArenaAllocator *arena, void *src, Dqn_isize size, Dqn_u8 alignment DQN_CALL_SITE_ARGS)
{
void *result = Dqn_ArenaAllocator__Allocate(arena, size + 1, alignment, Dqn_ZeroMem::Yes DQN_CALL_SITE_ARGS_INPUT);
DQN_MEMCOPY(result, src, size);
return result;
}
DQN_API Dqn_ArenaAllocatorBlock *Dqn_ArenaAllocator__AllocateBlock(Dqn_ArenaAllocator *arena, Dqn_isize requested_size DQN_CALL_SITE_ARGS)
{
Dqn_isize min_block_size = arena->min_block_size;
if (min_block_size == 0) min_block_size = DQN_MEM_ARENA_DEFAULT_MIN_BLOCK_SIZE;
Dqn_isize mem_block_size = DQN_M_MAX(min_block_size, requested_size);
auto const allocate_size = DQN_CAST(Dqn_isize)(sizeof(*arena->curr_mem_block) + mem_block_size);
Dqn_ArenaAllocatorBlock *result = nullptr;
switch (arena->mem_provider)
{
case Dqn_ArenaAllocatorMemProvider::CRT:
{
result = DQN_CAST(Dqn_ArenaAllocatorBlock *)DQN_MALLOC(allocate_size);
}
break;
case Dqn_ArenaAllocatorMemProvider::Virtual:
case Dqn_ArenaAllocatorMemProvider::UserMemory:
break;
}
if (!result) return result;
*result = {};
result->size = mem_block_size;
result->memory = DQN_CAST(Dqn_u8 *)result + sizeof(*result);
arena->total_allocated_mem_blocks++;
return result;
}
DQN_API void Dqn_ArenaAllocator__FreeBlock(Dqn_ArenaAllocator *arena, Dqn_ArenaAllocatorBlock *block)
{
if (!block)
return;
if (block->next)
block->next->prev = block->prev;
if (block->prev)
block->prev->next = block->next;
switch (arena->mem_provider)
{
case Dqn_ArenaAllocatorMemProvider::CRT: DQN_FREE(block); break;
case Dqn_ArenaAllocatorMemProvider::Virtual:
case Dqn_ArenaAllocatorMemProvider::UserMemory:
break;
}
}
DQN_API void Dqn_ArenaAllocator__AttachBlock(Dqn_ArenaAllocator *arena, Dqn_ArenaAllocatorBlock *new_block)
{
if (arena->top_mem_block)
{
DQN_ASSERT(arena->top_mem_block->next == nullptr);
arena->top_mem_block->next = new_block;
new_block->prev = arena->top_mem_block;
arena->top_mem_block = new_block;
}
else
{
arena->top_mem_block = new_block;
arena->curr_mem_block = new_block;
}
}
DQN_API Dqn_ArenaAllocator Dqn_ArenaAllocator_InitWithCRT(Dqn_isize size DQN_CALL_SITE_ARGS)
{
Dqn_ArenaAllocator result = {};
result.mem_provider = Dqn_ArenaAllocatorMemProvider::CRT;
if (size > 0)
{
DQN_ASSERT_MSG(size >= DQN_ISIZEOF(*result.curr_mem_block), "(%I64u >= %I64u) There needs to be enough space to encode the Dqn_ArenaAllocatorBlock struct into the memory buffer", size, sizeof(*result.curr_mem_block));
Dqn_ArenaAllocatorBlock *mem_block = Dqn_ArenaAllocator__AllocateBlock(&result, size DQN_CALL_SITE_ARGS_INPUT);
Dqn_ArenaAllocator__AttachBlock(&result, mem_block);
}
return result;
}
DQN_API Dqn_ArenaAllocator Dqn_ArenaAllocator_InitWithMemory(void *memory, Dqn_isize size)
{
Dqn_ArenaAllocator result = {};
result.mem_provider = Dqn_ArenaAllocatorMemProvider::UserMemory;
if (size > 0)
{
DQN_ASSERT_MSG(size >= DQN_ISIZEOF(*result.curr_mem_block), "(%I64u >= %I64u) There needs to be enough space to encode the Dqn_ArenaAllocatorBlock struct into the memory buffer", size, sizeof(*result.curr_mem_block));
auto *mem_block = DQN_CAST(Dqn_ArenaAllocatorBlock *) memory;
*mem_block = {};
mem_block->memory = DQN_CAST(Dqn_u8 *) memory + sizeof(*mem_block);
mem_block->size = size - DQN_CAST(Dqn_isize)sizeof(*mem_block);
Dqn_ArenaAllocator__AttachBlock(&result, mem_block);
}
return result;
}
DQN_API void Dqn_ArenaAllocator_Free(Dqn_ArenaAllocator *arena)
{
for (Dqn_ArenaAllocatorBlock *mem_block = arena->top_mem_block; mem_block;)
{
Dqn_ArenaAllocatorBlock *block_to_free = mem_block;
mem_block = block_to_free->prev;
Dqn_ArenaAllocator__FreeBlock(arena, block_to_free);
}
auto mem_provider = arena->mem_provider;
auto highest_used_mark = arena->highest_used_mark;
*arena = {};
arena->highest_used_mark = highest_used_mark;
arena->mem_provider = mem_provider;
}
DQN_API Dqn_b32 Dqn_ArenaAllocator_Reserve(Dqn_ArenaAllocator *arena, Dqn_isize size DQN_CALL_SITE_ARGS)
{
if (arena->top_mem_block)
{
Dqn_isize remaining_space = arena->top_mem_block->size - arena->top_mem_block->used;
if (remaining_space >= size) return true;
}
Dqn_ArenaAllocatorBlock *new_block = Dqn_ArenaAllocator__AllocateBlock(arena, size DQN_CALL_SITE_ARGS_INPUT);
if (!new_block) return false;
Dqn_ArenaAllocator__AttachBlock(arena, new_block);
return true;
}
DQN_API void Dqn_ArenaAllocator_ResetUsage(Dqn_ArenaAllocator *arena, Dqn_ZeroMem zero_mem)
{
arena->usage_before_last_reset = 0;
arena->wastage_before_last_reset = 0;
for (Dqn_ArenaAllocatorBlock *block = arena->top_mem_block; block; block = block->prev)
{
arena->usage_before_last_reset += block->used;
if (block->prev)
arena->wastage_before_last_reset += (block->size - block->used);
else
arena->curr_mem_block = block;
Dqn__ZeroMemBytes(block->memory, DQN_CAST(size_t)block->used, zero_mem);
block->used = 0;
}
}
DQN_API Dqn_ArenaAllocatorRegion Dqn_ArenaAllocator_BeginRegion(Dqn_ArenaAllocator *arena)
{
Dqn_ArenaAllocatorRegion result = {};
result.arena = arena;
result.curr_mem_block = arena->curr_mem_block;
result.curr_mem_block_used = (arena->curr_mem_block) ? arena->curr_mem_block->used : 0;
result.top_mem_block = arena->top_mem_block;
return result;
}
DQN_API void Dqn_ArenaAllocator_EndRegion(Dqn_ArenaAllocatorRegion region)
{
while (region.top_mem_block != region.arena->top_mem_block)
{
Dqn_ArenaAllocatorBlock *block_to_free = region.arena->top_mem_block;
if (region.arena->curr_mem_block == block_to_free)
region.arena->curr_mem_block = block_to_free->prev;
region.arena->top_mem_block = block_to_free->prev;
Dqn_ArenaAllocator__FreeBlock(region.arena, block_to_free);
}
for (Dqn_ArenaAllocatorBlock *mem_block = region.arena->top_mem_block; mem_block != region.curr_mem_block; mem_block = mem_block->prev)
mem_block->used = 0;
if (region.arena->curr_mem_block)
region.arena->curr_mem_block->used = region.curr_mem_block_used;
region = {};
}
Dqn_ArenaAllocatorAutoRegion Dqn_ArenaAllocator_AutoRegion(Dqn_ArenaAllocator *arena)
{
return Dqn_ArenaAllocatorAutoRegion(arena);
}
Dqn_ArenaAllocatorAutoRegion::Dqn_ArenaAllocatorAutoRegion(Dqn_ArenaAllocator *arena)
{
this->region = Dqn_ArenaAllocator_BeginRegion(arena);
}
Dqn_ArenaAllocatorAutoRegion::~Dqn_ArenaAllocatorAutoRegion()
{
Dqn_ArenaAllocator_EndRegion(this->region);
}
DQN_API void *Dqn_ArenaAllocator__Allocate(Dqn_ArenaAllocator *arena, Dqn_isize size, Dqn_u8 alignment, Dqn_ZeroMem zero_mem DQN_CALL_SITE_ARGS)
{
Dqn_isize allocation_size = size + (alignment - 1);
Dqn_b32 need_new_mem_block = true;
for (Dqn_ArenaAllocatorBlock *mem_block = arena->curr_mem_block; mem_block; mem_block = mem_block->next)
{
Dqn_b32 can_fit_in_block = (mem_block->used + allocation_size) <= mem_block->size;
if (can_fit_in_block)
{
arena->curr_mem_block = mem_block;
need_new_mem_block = false;
break;
}
}
if (need_new_mem_block)
{
Dqn_ArenaAllocatorBlock *new_block = Dqn_ArenaAllocator__AllocateBlock(arena, allocation_size DQN_CALL_SITE_ARGS_INPUT);
if (!new_block) return nullptr;
Dqn_ArenaAllocator__AttachBlock(arena, new_block);
arena->curr_mem_block = arena->top_mem_block;
}
Dqn_uintptr address = DQN_CAST(Dqn_uintptr) arena->curr_mem_block->memory + arena->curr_mem_block->used;
void *result = DQN_CAST(void *) Dqn_AlignAddress(address, alignment);
arena->curr_mem_block->used += allocation_size;
DQN_ASSERT(arena->curr_mem_block->used <= arena->curr_mem_block->size);
Dqn__ZeroMemBytes(DQN_CAST(void *)address, allocation_size, zero_mem);
Dqn_AllocationTracer_Add(arena->tracer, DQN_CAST(void *)address, allocation_size DQN_CALL_SITE_ARGS_INPUT);
return result;
}
DQN_API Dqn_ArenaAllocatorStats Dqn_ArenaAllocator_GetStats(Dqn_ArenaAllocator const *arena)
{
Dqn_ArenaAllocatorStats result = {};
result.total_blocks = arena->total_allocated_mem_blocks;
for (Dqn_ArenaAllocatorBlock const *block = arena->top_mem_block; block; block = block->prev)
{
result.total_allocated += block->size;
result.total_used += block->used;
if (block != arena->top_mem_block)
result.total_wasted += block->size - block->used;
}
return result;
}
Dqn_String const DQN_ARENA_ALLOCATOR__STATS_FMT = DQN_STRING("%s: %$$.3d/%$$.3d (wasted %$$.3d - %d blks)");
DQN_API void Dqn_ArenaAllocator_DumpStatsToLog(Dqn_ArenaAllocator const *arena, char const *label)
{
Dqn_ArenaAllocatorStats stats = Dqn_ArenaAllocator_GetStats(arena);
DQN_LOG_M(DQN_ARENA_ALLOCATOR__STATS_FMT.str,
label,
stats.total_used,
stats.total_allocated,
stats.total_wasted,
stats.total_blocks);
}
DQN_API Dqn_FixedString<512> Dqn_ArenaAllocator_StatsString(Dqn_ArenaAllocator const *arena, char const *label)
{
Dqn_ArenaAllocatorStats stats = Dqn_ArenaAllocator_GetStats(arena);
auto result = Dqn_FixedString_Fmt<512>(DQN_ARENA_ALLOCATOR__STATS_FMT.str,
label,
stats.total_used,
stats.total_allocated,
stats.total_wasted,
stats.total_blocks);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_V2 Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_V2I Dqn_V2_ToV2I(Dqn_V2 a)
{
Dqn_V2I result = Dqn_V2I(DQN_CAST(Dqn_i32)a.x, DQN_CAST(Dqn_i32)a.y);
return result;
}
DQN_API Dqn_V2 Dqn_V2_Min(Dqn_V2 a, Dqn_V2 b)
{
Dqn_V2 result = Dqn_V2(DQN_M_MIN(a.x, b.x), DQN_M_MIN(a.y, b.y));
return result;
}
DQN_API Dqn_V2 Dqn_V2_Max(Dqn_V2 a, Dqn_V2 b)
{
Dqn_V2 result = Dqn_V2(DQN_M_MAX(a.x, b.x), DQN_M_MAX(a.y, b.y));
return result;
}
DQN_API Dqn_V2 Dqn_V2_Abs(Dqn_V2 a)
{
Dqn_V2 result = Dqn_V2(DQN_M_ABS(a.x), DQN_M_ABS(a.y));
return result;
}
DQN_API Dqn_f32 Dqn_V2_Dot(Dqn_V2 a, Dqn_V2 b)
{
Dqn_f32 result = (a.x * b.x) + (a.y * b.y);
return result;
}
DQN_API Dqn_f32 Dqn_V2_LengthSq(Dqn_V2 a, Dqn_V2 b)
{
Dqn_f32 x_side = b.x - a.x;
Dqn_f32 y_side = b.y - a.y;
Dqn_f32 result = DQN_M_SQUARED(x_side) + DQN_M_SQUARED(y_side);
return result;
}
DQN_API Dqn_V2 Dqn_V2_Normalise(Dqn_V2 a)
{
Dqn_f32 length_sq = DQN_M_SQUARED(a.x) + DQN_M_SQUARED(a.y);
Dqn_f32 length = DQN_SQRTF(length_sq);
Dqn_V2 result = a / length;
return result;
}
DQN_API Dqn_V2 Dqn_V2_Perpendicular(Dqn_V2 a)
{
Dqn_V2 result = Dqn_V2(-a.y, a.x);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_V3 Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_f32 Dqn_V3_LengthSq(Dqn_V3 a)
{
Dqn_f32 result = DQN_M_SQUARED(a.x) + DQN_M_SQUARED(a.y) + DQN_M_SQUARED(a.z);
return result;
}
DQN_API Dqn_f32 Dqn_V3_Length(Dqn_V3 a)
{
Dqn_f32 length_sq = DQN_M_SQUARED(a.x) + DQN_M_SQUARED(a.y) + DQN_M_SQUARED(a.z);
Dqn_f32 result = DQN_SQRTF(length_sq);
return result;
}
DQN_API Dqn_V3 Dqn_V3_Normalise(Dqn_V3 a)
{
Dqn_f32 length = Dqn_V3_Length(a);
Dqn_V3 result = a / length;
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_V4 Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_f32 Dqn_V4_Dot(Dqn_V4 a, Dqn_V4 b)
{
Dqn_f32 result = (a.x * b.x) + (a.y * b.y) + (a.z * b.z) + (a.w * b.w);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_M4 Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_M4 Dqn_M4_Identity()
{
Dqn_M4 result =
{{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_ScaleF(Dqn_f32 x, Dqn_f32 y, Dqn_f32 z)
{
Dqn_M4 result =
{{
{x, 0, 0, 0},
{0, y, 0, 0},
{0, 0, z, 0},
{0, 0, 0, 1},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Scale(Dqn_V3 xyz)
{
Dqn_M4 result =
{{
{xyz.x, 0, 0, 0},
{0, xyz.y, 0, 0},
{0, 0, xyz.z, 0},
{0, 0, 0, 1},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_TranslateF(Dqn_f32 x, Dqn_f32 y, Dqn_f32 z)
{
Dqn_M4 result =
{{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{x, y, z, 1},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Translate(Dqn_V3 xyz)
{
Dqn_M4 result =
{{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{xyz.x, xyz.y, xyz.z, 1},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Transpose(Dqn_M4 mat)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
for (int row = 0; row < 4; row++)
result.columns[col][row] = mat.columns[row][col];
return result;
}
DQN_API Dqn_M4 Dqn_M4_Rotate(Dqn_V3 axis01, Dqn_f32 radians)
{
DQN_ASSERT_MSG(DQN_M_ABS(Dqn_V3_Length(axis01) - 1.f) <= 0.01f,
"Rotation axis must be normalised, length = %f",
Dqn_V3_Length(axis01));
Dqn_f32 sin = DQN_M_SINF(radians);
Dqn_f32 cos = DQN_M_COSF(radians);
Dqn_f32 one_minus_cos = 1.f - cos;
Dqn_f32 x = axis01.x;
Dqn_f32 y = axis01.y;
Dqn_f32 z = axis01.z;
Dqn_f32 x2 = DQN_M_SQUARED(x);
Dqn_f32 y2 = DQN_M_SQUARED(y);
Dqn_f32 z2 = DQN_M_SQUARED(z);
Dqn_M4 result =
{{
{cos + x2*one_minus_cos, y*x*one_minus_cos + z*sin, z*x*one_minus_cos - y*sin, 0}, // Col 1
{x*y*one_minus_cos - z*sin, cos + y2*one_minus_cos, z*y*one_minus_cos + x*sin, 0}, // Col 2
{x*z*one_minus_cos + y*sin, y*z*one_minus_cos - x*sin, cos + z2*one_minus_cos, 0}, // Col 3
{0, 0, 0, 1}, // Col 4
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Orthographic(Dqn_f32 left, Dqn_f32 right, Dqn_f32 bottom, Dqn_f32 top, Dqn_f32 z_near, Dqn_f32 z_far)
{
Dqn_M4 result =
{{
{2.f / (right - left), 0.f, 0.f, 0.f},
{0.f, 2.f / (top - bottom), 0.f, 0.f},
{0.f, 0.f, -2.f / (z_far - z_near), 0.f},
{(-1.f * (right + left)) / (right - left), (-1.f * (top + bottom)) / (top - bottom), (-1.f * (z_far + z_near)) / (z_far - z_near), 1.f},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Perspective(Dqn_f32 fov /*radians*/, Dqn_f32 aspect, Dqn_f32 z_near, Dqn_f32 z_far)
{
Dqn_f32 tan_fov = DQN_M_TANF(fov / 2.f);
Dqn_M4 result =
{{
{1.f / (aspect * tan_fov), 0.f, 0.f, 0.f},
{0, 1.f / tan_fov, 0.f, 0.f},
{0.f, 0.f, (z_near + z_far) / (z_near - z_far), -1.f},
{0.f, 0.f, (2.f * z_near * z_far)/(z_near - z_far), 0.f},
}};
return result;
}
DQN_API Dqn_M4 Dqn_M4_Add(Dqn_M4 lhs, Dqn_M4 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] + rhs.columns[col][it];
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_Sub(Dqn_M4 lhs, Dqn_M4 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] - rhs.columns[col][it];
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_Mul(Dqn_M4 lhs, Dqn_M4 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int row = 0; row < 4; row++)
{
Dqn_f32 sum = 0;
for (int f32_it = 0; f32_it < 4; f32_it++)
sum += lhs.columns[f32_it][row] * rhs.columns[col][f32_it];
result.columns[col][row] = sum;
}
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_Div(Dqn_M4 lhs, Dqn_M4 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] / rhs.columns[col][it];
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_AddF(Dqn_M4 lhs, Dqn_f32 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] + rhs;
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_SubF(Dqn_M4 lhs, Dqn_f32 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] - rhs;
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_MulF(Dqn_M4 lhs, Dqn_f32 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] * rhs;
}
return result;
}
DQN_API Dqn_M4 Dqn_M4_DivF(Dqn_M4 lhs, Dqn_f32 rhs)
{
Dqn_M4 result;
for (int col = 0; col < 4; col++)
{
for (int it = 0; it < 4; it++)
result.columns[col][it] = lhs.columns[col][it] / rhs;
}
return result;
}
DQN_API Dqn_FixedString<256> Dqn_M4_ColumnMajorString(Dqn_M4 mat)
{
Dqn_FixedString<256> result = {};
for (int row = 0; row < 4; row++)
{
for (int it = 0; it < 4; it++)
{
if (it == 0) Dqn_FixedString_Append(&result, "|");
Dqn_FixedString_AppendFmt(&result, "%.5f", mat.columns[it][row]);
if (it != 3) Dqn_FixedString_Append(&result, ", ");
else Dqn_FixedString_Append(&result, "|\n");
}
}
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Rect
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_Rect Dqn_Rect_InitFromPosAndSize(Dqn_V2 pos, Dqn_V2 size)
{
Dqn_Rect result = {};
result.min = pos;
if (size.x < 0) result.min.x -= size.x;
if (size.y < 0) result.min.y -= size.y;
result.max = result.min + Dqn_V2_Abs(size);
return result;
}
DQN_API Dqn_V2 Dqn_Rect_Center(Dqn_Rect rect)
{
Dqn_V2 size = rect.max - rect.min;
Dqn_V2 result = rect.min + (size * 0.5f);
return result;
}
DQN_API Dqn_b32 Dqn_Rect_ContainsPoint(Dqn_Rect rect, Dqn_V2 p)
{
Dqn_b32 result = (p.x >= rect.min.x && p.x <= rect.max.x && p.y >= rect.min.y && p.y <= rect.max.y);
return result;
}
DQN_API Dqn_b32 Dqn_Rect_ContainsRect(Dqn_Rect a, Dqn_Rect b)
{
Dqn_b32 result = (b.min >= a.min && b.max <= a.max);
return result;
}
DQN_API Dqn_V2 Dqn_Rect_Size(Dqn_Rect rect)
{
Dqn_V2 result = rect.max - rect.min;
return result;
}
DQN_API Dqn_Rect Dqn_Rect_Move(Dqn_Rect src, Dqn_V2 move_amount)
{
Dqn_Rect result = src;
result.min += move_amount;
result.max += move_amount;
return result;
}
DQN_API Dqn_Rect Dqn_Rect_MoveTo(Dqn_Rect src, Dqn_V2 dest)
{
Dqn_V2 move_amount = dest - src.min;
Dqn_Rect result = src;
result.min += move_amount;
result.max += move_amount;
return result;
}
DQN_API Dqn_b32 Dqn_Rect_Intersects(Dqn_Rect a, Dqn_Rect b)
{
Dqn_b32 result = (a.min.x <= b.max.x && a.max.x >= b.min.x) &&
(a.min.y <= b.max.y && a.max.y >= b.min.y);
return result;
}
DQN_API Dqn_Rect Dqn_Rect_Intersection(Dqn_Rect a, Dqn_Rect b)
{
Dqn_Rect result = {};
if (Dqn_Rect_Intersects(a, b))
{
result.min.x = DQN_M_MAX(a.min.x, b.min.x);
result.min.y = DQN_M_MAX(a.min.y, b.min.y);
result.max.x = DQN_M_MIN(a.max.x, b.max.x);
result.max.y = DQN_M_MIN(a.max.y, b.max.y);
}
return result;
}
DQN_API Dqn_Rect Dqn_Rect_Union(Dqn_Rect a, Dqn_Rect b)
{
Dqn_Rect result = {};
result.min.x = DQN_M_MIN(a.min.x, b.min.x);
result.min.y = DQN_M_MIN(a.min.y, b.min.y);
result.max.x = DQN_M_MAX(a.max.x, b.max.x);
result.max.y = DQN_M_MAX(a.max.y, b.max.y);
return result;
}
DQN_API Dqn_Rect Dqn_Rect_FromRectI32(Dqn_RectI32 a)
{
Dqn_Rect result = Dqn_Rect(a.min, a.max);
return result;
}
DQN_API Dqn_V2I Dqn_RectI32_Size(Dqn_RectI32 rect)
{
Dqn_V2I result = rect.max - rect.min;
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Math Utils
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_V2 Dqn_LerpV2(Dqn_V2 a, Dqn_f32 t, Dqn_V2 b)
{
Dqn_V2 result = {};
result.x = a.x + ((b.x - a.x) * t);
result.y = a.y + ((b.y - a.y) * t);
return result;
}
DQN_API Dqn_f32 Dqn_LerpF32(Dqn_f32 a, Dqn_f32 t, Dqn_f32 b)
{
Dqn_f32 result = a + ((b - a) * t);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Bit
// -------------------------------------------------------------------------------------------------
DQN_API void Dqn_Bit_UnsetInplace(Dqn_u64 *flags, Dqn_u64 bitfield)
{
*flags = (*flags & ~bitfield);
}
DQN_API void Dqn_Bit_SetInplace(Dqn_u64 *flags, Dqn_u64 bitfield)
{
*flags = (*flags | bitfield);
}
DQN_API Dqn_b32 Dqn_Bit_IsSet(Dqn_u64 bits, Dqn_u64 bits_to_set)
{
auto result = DQN_CAST(Dqn_b32)((bits & bits_to_set) == bits_to_set);
return result;
}
DQN_API Dqn_b32 Dqn_Bit_IsNotSet(Dqn_u64 bits, Dqn_u64 bits_to_check)
{
auto result = !Dqn_Bit_IsSet(bits, bits_to_check);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Safe Arithmetic
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_i64 Dqn_Safe_AddI64(Dqn_i64 a, Dqn_i64 b)
{
DQN_ASSERT_MSG(a <= DQN_I64_MAX - b, "%I64d <= %I64d", a, DQN_I64_MAX - b);
Dqn_i64 result = (a <= DQN_I64_MAX - b) ? (a + b) : DQN_I64_MAX;
return result;
}
DQN_API Dqn_i64 Dqn_Safe_MulI64(Dqn_i64 a, Dqn_i64 b)
{
DQN_ASSERT_MSG(a <= DQN_I64_MAX / b , "%I64d <= %I64d", a, DQN_I64_MAX / b);
Dqn_i64 result = (a <= DQN_I64_MAX / b) ? (a * b) : DQN_I64_MAX;
return result;
}
DQN_API Dqn_u64 Dqn_Safe_AddU64(Dqn_u64 a, Dqn_u64 b)
{
DQN_ASSERT_MSG(a <= DQN_U64_MAX - b, "%I64u <= %I64u", a, DQN_U64_MAX - b);
Dqn_u64 result = (a <= DQN_U64_MAX - b) ? (a + b) : DQN_U64_MAX;
return result;
}
DQN_API Dqn_u64 Dqn_Safe_SubU64(Dqn_u64 a, Dqn_u64 b)
{
DQN_ASSERT_MSG(a >= b, "%I64u >= %I64u", a, b);
Dqn_u64 result = (a >= b) ? (a - b) : 0;
return result;
}
DQN_API Dqn_u32 Dqn_Safe_SubU32(Dqn_u32 a, Dqn_u32 b)
{
DQN_ASSERT_MSG(a >= b, "%I32u >= %I32u", a, b);
Dqn_u32 result = (a >= b) ? (a - b) : 0;
return result;
}
DQN_API Dqn_u64 Dqn_Safe_MulU64(Dqn_u64 a, Dqn_u64 b)
{
DQN_ASSERT_MSG(a <= DQN_U64_MAX / b , "%I64u <= %I64u", a, DQN_U64_MAX / b);
Dqn_u64 result = (a <= DQN_U64_MAX / b) ? (a * b) : DQN_U64_MAX;
return result;
}
DQN_API int Dqn_Safe_TruncateISizeToInt(Dqn_isize val)
{
DQN_ASSERT_MSG(val >= DQN_I32_MIN && val <= DQN_I32_MAX, "%zd >= %zd && %zd <= %zd", val, DQN_I32_MAX, val, DQN_I32_MAX);
auto result = (val >= DQN_I32_MIN && val <= DQN_I32_MAX) ? DQN_CAST(int)val : 0;
return result;
}
DQN_API Dqn_i32 Dqn_Safe_TruncateISizeToI32(Dqn_isize val)
{
DQN_ASSERT_MSG(val >= DQN_I32_MIN && val <= DQN_I32_MAX, "%zd >= %zd && %zd <= %zd", val, DQN_I32_MIN, val, DQN_I32_MAX);
auto result = (val >= DQN_I32_MIN && val <= DQN_I32_MAX) ? DQN_CAST(Dqn_i32)val : 0;
return result;
}
DQN_API Dqn_u32 Dqn_Safe_TruncateUSizeToU32(Dqn_usize val)
{
DQN_ASSERT_MSG(val <= DQN_U32_MAX, "%zu <= %zu", val, DQN_U32_MAX);
auto result = (val <= DQN_U32_MAX) ? DQN_CAST(Dqn_u32)val : DQN_U32_MAX;
return result;
}
DQN_API Dqn_i32 Dqn_Safe_TruncateUSizeToI32(Dqn_usize val)
{
DQN_ASSERT_MSG(val <= DQN_I32_MAX, "%zu <= %zu", val, DQN_I32_MAX);
auto result = (val <= DQN_I32_MAX) ? DQN_CAST(int)val : DQN_I32_MAX;
return result;
}
DQN_API int Dqn_Safe_TruncateUSizeToInt(Dqn_usize val)
{
DQN_ASSERT_MSG(val <= DQN_I32_MAX, "%zu <= %zu", val, DQN_I32_MAX);
auto result = (val <= DQN_I32_MAX) ? DQN_CAST(int)val : DQN_I32_MAX;
return result;
}
DQN_API Dqn_isize Dqn_Safe_TruncateUSizeToISize(Dqn_usize val)
{
DQN_ASSERT_MSG(val <= DQN_ISIZE_MAX, "%zu <= %zu", val, DQN_CAST(Dqn_usize)DQN_ISIZE_MAX);
auto result = (val <= DQN_ISIZE_MAX) ? DQN_CAST(Dqn_isize)val : DQN_ISIZE_MAX;
return result;
}
DQN_API Dqn_u32 Dqn_Safe_TruncateU64ToU32(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_U32_MAX, "%I64u <= %I64u", val, DQN_U32_MAX);
auto result = (val <= DQN_U32_MAX) ? DQN_CAST(Dqn_u32)val : DQN_U32_MAX;
return result;
}
DQN_API Dqn_u16 Dqn_Safe_TruncateU64ToU16(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_U16_MAX, "%I64u <= %I64u", val, DQN_U16_MAX);
auto result = (val <= DQN_U16_MAX) ? DQN_CAST(Dqn_u16)val : DQN_U16_MAX;
return result;
}
DQN_API Dqn_u8 Dqn_Safe_TruncateU64ToU8(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_U8_MAX, "%I64u <= %I64u", val, DQN_U8_MAX);
auto result = (val <= DQN_U8_MAX) ? DQN_CAST(Dqn_u8)val : DQN_U8_MAX;
return result;
}
DQN_API Dqn_i64 Dqn_Safe_TruncateU64ToI64(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_I64_MAX, "%I64u <= %I64d", val, DQN_I64_MAX);
auto result = (val <= DQN_I64_MAX) ? DQN_CAST(Dqn_i64)val : DQN_I64_MAX;
return result;
}
DQN_API Dqn_i32 Dqn_Safe_TruncateU64ToI32(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_I32_MAX, "%I64u <= %I64d", val, DQN_I32_MAX);
auto result = (val <= DQN_I32_MAX) ? DQN_CAST(Dqn_i32)val : DQN_I32_MAX;
return result;
}
DQN_API Dqn_i16 Dqn_Safe_TruncateU64ToI16(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_I16_MAX, "%I64u <= %I64d", val, DQN_I16_MAX);
auto result = (val <= DQN_I16_MAX) ? DQN_CAST(Dqn_i16)val : DQN_I16_MAX;
return result;
}
DQN_API Dqn_i8 Dqn_Safe_TruncateU64ToI8(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_I8_MAX, "%I64u <= %I64d", val, DQN_I8_MAX);
auto result = (val <= DQN_I8_MAX) ? DQN_CAST(Dqn_i8)val : DQN_I8_MAX;
return result;
}
DQN_API int Dqn_Safe_TruncateU64ToInt(Dqn_u64 val)
{
DQN_ASSERT_MSG(val <= DQN_I32_MAX, "%I64u <= %I64d", val, DQN_I32_MAX);
auto result = (val <= DQN_I32_MAX) ? DQN_CAST(int)val : DQN_I32_MAX;
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Char
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_b32 Dqn_Char_IsAlpha(char ch)
{
Dqn_b32 result = (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z');
return result;
}
DQN_API Dqn_b32 Dqn_Char_IsDigit(char ch)
{
Dqn_b32 result = (ch >= '0' && ch <= '9');
return result;
}
DQN_API Dqn_b32 Dqn_Char_IsAlphaNum(char ch)
{
Dqn_b32 result = Dqn_Char_IsAlpha(ch) || Dqn_Char_IsDigit(ch);
return result;
}
DQN_API Dqn_b32 Dqn_Char_IsWhitespace(char ch)
{
Dqn_b32 result = (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r');
return result;
}
DQN_API Dqn_b32 Dqn_Char_IsHex(char ch)
{
Dqn_b32 result = ((ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F') || (ch >= '0' || ch <= '9'));
return result;
}
DQN_API Dqn_u8 Dqn_Char_HexToU8(char ch)
{
DQN_ASSERT_MSG(Dqn_Char_IsHex(ch), "Hex character not valid '%c'", ch);
Dqn_u8 result = 0;
if (ch >= 'a' && ch <= 'f')
result = ch - 'a' + 10;
else if (ch >= 'A' && ch <= 'F')
result = ch - 'A' + 10;
else
result = ch - '0';
return result;
}
char constexpr DQN_HEX_LUT[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
DQN_API char Dqn_Char_ToHex(char ch)
{
char result = DQN_CAST(char)-1;
if (ch <= 16) result = DQN_HEX_LUT[DQN_CAST(unsigned)ch];
return result;
}
DQN_API char Dqn_Char_ToHexUnchecked(char ch)
{
char result = DQN_HEX_LUT[DQN_CAST(unsigned)ch];
return result;
}
DQN_API char Dqn_Char_ToLower(char ch)
{
char result = ch;
if (result >= 'A' && result <= 'Z')
result += 'a' - 'A';
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Hex
// -------------------------------------------------------------------------------------------------
DQN_API char const *Dqn_Hex_CStringTrimSpaceAnd0xPrefix(char const *hex, Dqn_isize size, Dqn_isize *real_size)
{
Dqn_isize trimmed_size = 0;
char const *trimmed_hex = Dqn_Str_TrimWhitespaceAround(hex, size, &trimmed_size);
char const *result = Dqn_Str_TrimPrefix(trimmed_hex,
trimmed_size,
"0x",
2 /*prefix_size*/,
&trimmed_size);
if (real_size) *real_size = trimmed_size;
return result;
}
DQN_API Dqn_String Dqn_Hex_StringTrimSpaceAnd0xPrefix(Dqn_String const string)
{
Dqn_isize trimmed_size = 0;
char const *trimmed = Dqn_Hex_CStringTrimSpaceAnd0xPrefix(string.str, string.size, &trimmed_size);
Dqn_String result = Dqn_String_Init(trimmed, trimmed_size);
return result;
}
DQN_API Dqn_u8 *Dqn_Hex_CStringToU8BytesUnchecked(char const *hex, Dqn_isize size, Dqn_isize *real_size, Dqn_ArenaAllocator *arena)
{
Dqn_u8 *result = Dqn_ArenaAllocator_NewArray(arena, Dqn_u8, size / 2, Dqn_ZeroMem::No);
Dqn_u8 *ptr = result;
Dqn_b32 even_size = ((size & 1) == 0);
DQN_ASSERT_MSG(even_size, "Unexpected uneven-size given for converting hex size: %d, hex: %.*s", size, size, hex);
for (Dqn_isize index = 0; index < size; index += 2)
{
char hex01 = hex[index + 0];
char hex02 = hex[index + 1];
DQN_ASSERT_MSG(Dqn_Char_IsHex(hex01), "hex01: %c", hex01);
DQN_ASSERT_MSG(Dqn_Char_IsHex(hex02), "hex02: %c", hex02);
char value01 = Dqn_Char_HexToU8(hex01);
char value02 = Dqn_Char_HexToU8(hex02);
char value = (value01 << 4) | value02;
*ptr++ = value;
}
Dqn_u8 const *end = result + size / 2;
DQN_ASSERT_MSG(ptr == end, "ptr: %p, end: %p", ptr, end);
if (real_size) *real_size = (size / 2);
return result;
}
DQN_API Dqn_Array<Dqn_u8> Dqn_Hex_CStringToU8ArrayUnchecked(char const *hex, Dqn_isize size, Dqn_ArenaAllocator *arena)
{
Dqn_isize data_size = 0;
auto *data = DQN_CAST(Dqn_u8 *)Dqn_Hex_CStringToU8BytesUnchecked(hex, size, &data_size, arena);
Dqn_Array<Dqn_u8> result = Dqn_Array_InitWithMemory(data, data_size, data_size);
return result;
}
DQN_API Dqn_Array<Dqn_u8> Dqn_Hex_StringToU8ArrayUnchecked(Dqn_String const hex, Dqn_ArenaAllocator *arena)
{
Dqn_isize data_size = 0;
auto *data = DQN_CAST(Dqn_u8 *)Dqn_Hex_CStringToU8BytesUnchecked(hex.str, hex.size, &data_size, arena);
Dqn_Array<Dqn_u8> result = Dqn_Array_InitWithMemory(data, data_size, data_size);
return result;
}
DQN_API char *Dqn_Hex_U8BytesToCString(char const *bytes, Dqn_isize size, Dqn_ArenaAllocator *arena)
{
char *result = size > 0 ? Dqn_ArenaAllocator_NewArray(arena, char, size * 2, Dqn_ZeroMem::No) : nullptr;
if (result)
{
char *ptr = result;
for (Dqn_isize index = 0; index < size; index++)
{
char byte = bytes[index];
char hex01 = (byte >> 4) & 0xF;
char hex02 = byte & 0xF;
DQN_ASSERT_MSG(hex01 <= 0xF, "hex01: %d", hex01);
DQN_ASSERT_MSG(hex02 <= 0xF, "hex02: %d", hex02);
*ptr++ = Dqn_Char_ToHexUnchecked(hex01);
*ptr++ = Dqn_Char_ToHexUnchecked(hex02);
}
}
return result;
}
DQN_API Dqn_String Dqn_Hex_U8ArrayToString(Dqn_Array<Dqn_u8> const bytes, Dqn_ArenaAllocator *arena)
{
char *hex = Dqn_Hex_U8BytesToCString(DQN_CAST(char const *)bytes.data, bytes.size, arena);
Dqn_String result = Dqn_String_Init(hex, bytes.size * 2);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Str
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_b32 Dqn_Str_Equals(char const *a, char const *b, Dqn_isize a_len, Dqn_isize b_len)
{
if (a_len == -1) a_len = DQN_CAST(Dqn_isize)Dqn_Str_Size(a);
if (b_len == -1) b_len = DQN_CAST(Dqn_isize)Dqn_Str_Size(b);
if (a_len != b_len) return false;
return (DQN_MEMCMP(a, b, DQN_CAST(size_t)a_len) == 0);
}
DQN_API char const *Dqn_Str_FindMulti(char const *buf, char const *find_list[], Dqn_isize const *find_string_lens, Dqn_isize find_len, Dqn_isize *match_index, Dqn_isize buf_len)
{
char const *result = nullptr;
if (find_len == 0) return result;
if (buf_len < 0) buf_len = DQN_CAST(Dqn_isize)Dqn_Str_Size(buf);
char const *buf_end = buf + buf_len;
for (; buf != buf_end; ++buf)
{
Dqn_isize remaining = static_cast<Dqn_isize>(buf_end - buf);
DQN_FOR_EACH(find_index, find_len)
{
char const *find = find_list[find_index];
Dqn_isize find_str_len = find_string_lens[find_index];
if (remaining < find_str_len) continue;
if (strncmp(buf, find, DQN_CAST(size_t)find_str_len) == 0)
{
result = buf;
*match_index = find_index;
return result;
}
}
}
return result;
}
DQN_API char const *Dqn_Str_Find(char const *buf, char const *find, Dqn_isize buf_len, Dqn_isize find_len, Dqn_b32 case_insensitive)
{
if (find_len == 0) return nullptr;
if (buf_len < 0) buf_len = DQN_CAST(Dqn_isize)Dqn_Str_Size(buf);
if (find_len < 0) find_len = DQN_CAST(Dqn_isize)Dqn_Str_Size(find);
char const *buf_end = buf + buf_len;
char const *result = nullptr;
for (; buf != buf_end; ++buf)
{
Dqn_isize remaining = static_cast<Dqn_isize>(buf_end - buf);
if (remaining < find_len) break;
Dqn_b32 matched = true;
for (Dqn_isize index = 0; index < find_len; index++)
{
char lhs = buf[index];
char rhs = find[index];
if (case_insensitive)
{
lhs = Dqn_Char_ToLower(lhs);
rhs = Dqn_Char_ToLower(rhs);
}
if (lhs != rhs)
{
matched = false;
break;
}
}
if (matched)
{
result = buf;
break;
}
}
return result;
}
DQN_API char const *Dqn_Str_FileNameFromPath(char const *path, Dqn_isize len, Dqn_isize *file_name_len)
{
char const *result = path;
Dqn_isize result_len = len == -1 ? Dqn_Str_Size(path) : len;
for (Dqn_isize i = (result_len - 1); i >= 0; --i)
{
if (result[i] == '\\' || result[i] == '/')
{
char const *file_end = result + result_len;
result = result + (i + 1);
result_len = DQN_CAST(Dqn_isize)(file_end - result);
break;
}
}
if (file_name_len)
*file_name_len = result_len;
return result;
}
DQN_API Dqn_isize Dqn_Str_Size(char const *src)
{
Dqn_isize result = 0;
while (src && src[0] != 0)
{
src++;
result++;
}
return result;
}
DQN_API Dqn_b32 Dqn_Str_Match(char const *src, char const *find, int find_len)
{
if (find_len == -1) find_len = Dqn_Safe_TruncateUSizeToInt(Dqn_Str_Size(find));
auto result = DQN_CAST(Dqn_b32)(strncmp(src, find, DQN_CAST(size_t)find_len) == 0);
return result;
}
DQN_API char const *Dqn_Str_SkipToChar(char const *src, char ch)
{
char const *result = src;
while (result && result[0] && result[0] != ch) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToNextAlphaNum(char const *src)
{
char const *result = src;
while (result && result[0] && !Dqn_Char_IsAlphaNum(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToNextDigit(char const *src)
{
char const *result = src;
while (result && result[0] && !Dqn_Char_IsDigit(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToNextChar(char const *src)
{
char const *result = src;
while (result && result[0] && !Dqn_Char_IsAlpha(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToNextWord(char const *src)
{
char const *result = src;
while (result && result[0] && !Dqn_Char_IsWhitespace(result[0])) ++result;
while (result && result[0] && Dqn_Char_IsWhitespace(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToNextWhitespace(char const *src)
{
char const *result = src;
while (result && result[0] && !Dqn_Char_IsWhitespace(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipWhitespace(char const *src)
{
char const *result = src;
while (result && result[0] && Dqn_Char_IsWhitespace(result[0])) ++result;
return result;
}
DQN_API char const *Dqn_Str_SkipToCharInPlace(char const **src, char ch)
{
*src = Dqn_Str_SkipToChar(*src, ch);
return *src;
}
DQN_API char const *Dqn_Str_SkipToNextAlphaNumInPlace(char const **src)
{
*src = Dqn_Str_SkipToNextAlphaNum(*src);
return *src;
}
DQN_API char const *Dqn_Str_SkipToNextCharInPlace(char const **src)
{
*src = Dqn_Str_SkipToNextChar(*src);
return *src;
}
DQN_API char const *Dqn_Str_SkipToNextWhitespaceInPlace(char const **src)
{
*src = Dqn_Str_SkipToNextWhitespace(*src);
return *src;
}
DQN_API char const *Dqn_Str_SkipToNextWordInPlace(char const **src)
{
*src = Dqn_Str_SkipToNextWord(*src);
return *src;
}
DQN_API char const *Dqn_Str_SkipWhitespaceInPlace(char const **src)
{
*src = Dqn_Str_SkipWhitespace(*src);
return *src;
}
DQN_API char const *Dqn_Str_TrimWhitespaceAround(char const *src, Dqn_isize size, Dqn_isize *new_size)
{
char const *result = src;
if (new_size) *new_size = 0;
if (size <= 0) return result;
char const *start = result;
char const *end = start + (size - 1);
while (Dqn_Char_IsWhitespace(start[0])) start++;
while (end != start && Dqn_Char_IsWhitespace(end[0])) end--;
result = start;
if (new_size) *new_size = ((end - start) + 1);
return result;
}
DQN_API char const *Dqn_Str_TrimPrefix(char const *src, Dqn_isize size, char const *prefix, Dqn_isize prefix_size, Dqn_isize *trimmed_size)
{
char const *result = src;
if (size >= prefix_size)
{
Dqn_b32 prefix_matched = true;
for (Dqn_isize prefix_index = 0;
prefix_index < prefix_size && prefix_matched;
prefix_index++)
{
char prefix_ch = prefix[prefix_index];
char src_ch = src[prefix_index];
prefix_matched = src_ch == prefix_ch;
}
if (prefix_matched)
{
result += prefix_size;
*trimmed_size = size - prefix_size;
}
}
return result;
}
DQN_API Dqn_u64 Dqn_Str_ToU64(char const *buf, int len, char separator)
{
Dqn_u64 result = 0;
if (!buf) return result;
if (len == -1) len = Dqn_Safe_TruncateUSizeToInt(Dqn_Str_Size(buf));
if (len == 0) return result;
char const *buf_ptr = Dqn_Str_SkipWhitespace(buf);
len -= static_cast<int>(buf_ptr - buf);
for (int buf_index = 0; buf_index < len; ++buf_index)
{
char ch = buf_ptr[buf_index];
if (buf_index && ch == separator)
continue;
if (ch < '0' || ch > '9')
break;
Dqn_u64 val = DQN_CAST(Dqn_u64)(ch - '0');
result = Dqn_Safe_AddU64(result, val);
result = Dqn_Safe_MulU64(result, 10);
}
result /= 10;
return result;
}
DQN_API Dqn_i64 Dqn_Str_ToI64(char const *buf, int len, char separator)
{
Dqn_i64 result = 0;
if (!buf) return result;
if (len == -1) len = Dqn_Safe_TruncateUSizeToInt(Dqn_Str_Size(buf));
if (len == 0) return result;
char const *buf_ptr = Dqn_Str_SkipWhitespace(buf);
len -= static_cast<int>(buf_ptr - buf);
Dqn_b32 negative = (buf[0] == '-');
if (negative)
{
++buf_ptr;
--len;
}
for (int buf_index = 0; buf_index < len; ++buf_index)
{
char ch = buf_ptr[buf_index];
if (buf_index && ch == separator) continue;
if (ch < '0' || ch > '9') break;
Dqn_i64 val = ch - '0';
result = Dqn_Safe_AddI64(result, val);
result = Dqn_Safe_MulI64(result, 10);
}
result /= 10;
if (negative) result *= -1;
return result;
}
DQN_API Dqn_isize Dqn_StrW_Size(wchar_t const *src)
{
Dqn_isize result = 0;
while (src && src[0] != 0)
{
src++;
result++;
}
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_File
// -------------------------------------------------------------------------------------------------
DQN_API char *Dqn_File__ReadFile(char const *file, Dqn_isize *file_size, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS)
{
Dqn_isize file_size_ = 0;
if (!file_size)
file_size = &file_size_;
FILE *file_handle = fopen(file, "rb");
if (!file_handle)
{
DQN_LOG_E("Failed to open file '%s' using fopen\n", file);
return nullptr;
}
DQN_DEFER { fclose(file_handle); };
fseek(file_handle, 0, SEEK_END);
*file_size = ftell(file_handle);
if (DQN_CAST(long)(*file_size) == -1L)
{
DQN_LOG_E("Failed to determine '%s' file size using ftell\n", file);
return nullptr;
}
rewind(file_handle);
auto mem_region = Dqn_ArenaAllocator_BeginRegion(arena);
auto *result = DQN_CAST(char *) Dqn_ArenaAllocator__Allocate(arena, *file_size + 1, alignof(char), Dqn_ZeroMem::No DQN_CALL_SITE_ARGS_INPUT);
if (!result)
{
DQN_LOG_M("Failed to allocate %td bytes to read file '%s'\n", *file_size + 1, file);
return nullptr;
}
result[*file_size] = 0;
if (fread(result, DQN_CAST(size_t)(*file_size), 1, file_handle) != 1)
{
Dqn_ArenaAllocator_EndRegion(mem_region);
DQN_LOG_E("Failed to read %td bytes into buffer from '%s'\n", *file_size, file);
return nullptr;
}
return result;
}
DQN_API Dqn_String Dqn_File__ArenaReadFileToString(char const *file, Dqn_ArenaAllocator *arena DQN_CALL_SITE_ARGS)
{
Dqn_isize file_size = 0;
char * string = Dqn_File__ReadFile(file, &file_size, arena DQN_CALL_SITE_ARGS_INPUT);
Dqn_String result = Dqn_String_Init(string, file_size);
return result;
}
DQN_API Dqn_b32 Dqn_File_WriteFile(char const *file, char const *buffer, Dqn_isize buffer_size)
{
FILE *file_handle = fopen(file, "w+b");
if (!file_handle)
{
DQN_LOG_E("Failed to open file '%s' using fopen\n", file);
return false;
}
DQN_DEFER { fclose(file_handle); };
Dqn_usize write_count = fwrite(buffer, buffer_size, 1 /*count*/, file_handle);
if (write_count != 1)
{
DQN_LOG_E("Failed to write to file '%s' using fwrite\n", file);
return false;
}
return true;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_File Implementation
// -------------------------------------------------------------------------------------------------
#if defined(DQN_OS_WIN32)
DQN_API Dqn_u64 Dqn_Win__FileTimeToSeconds(FILETIME const *time)
{
ULARGE_INTEGER time_large_int = {};
time_large_int.u.LowPart = time->dwLowDateTime;
time_large_int.u.HighPart = time->dwHighDateTime;
Dqn_u64 result = (time_large_int.QuadPart / 10000000ULL) - 11644473600ULL;
return result;
}
#endif
DQN_API Dqn_b32 Dqn_File_Exists(char const *path)
{
Dqn_b32 result = false;
#if defined(DQN_OS_WIN32)
result = PathFileExistsA(path);
#else
result = access(path, F_OK /*file exists*/);
#endif
return result;
}
DQN_API Dqn_FileInfo Dqn_File_Info(char const *path)
{
Dqn_FileInfo result = {};
#if defined(DQN_OS_WIN32)
WIN32_FILE_ATTRIBUTE_DATA attrib_data = {};
if (!GetFileAttributesExA(path, GetFileExInfoStandard, &attrib_data))
return result;
if (result)
{
result.create_time_in_s = Dqn_Win__FileTimeToSeconds(&attrib_data.ftCreationTime);
result.last_access_time_in_s = Dqn_Win__FileTimeToSeconds(&attrib_data.ftLastAccessTime);
result.last_write_time_in_s = Dqn_Win__FileTimeToSeconds(&attrib_data.ftLastWriteTime);
LARGE_INTEGER large_int = {};
large_int.u.HighPart = DQN_CAST(Dqn_i32)attrib_data.nFileSizeHigh;
large_int.u.LowPart = attrib_data.nFileSizeLow;
result.size = (Dqn_u64)large_int.QuadPart;
}
#else
// TODO(dqn): Implement
DQN_INVALID_CODE_PATH;
#endif
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Utilities
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_isize Dqn_EpochTimeToLocalDate(Dqn_i64 timestamp, Dqn_EpochTimeFormat format, char *buf, Dqn_isize buf_len)
{
DQN_ASSERT(buf_len >= 0);
time_t time = DQN_CAST(time_t) timestamp;
tm *date_time = localtime(&time);
Dqn_isize result = {};
switch (format)
{
case Dqn_EpochTimeFormat::Day_Month_D_HH_MM_SS_YYYYY:
result = strftime(buf, DQN_CAST(Dqn_usize) buf_len, "%c", date_time);
break;
case Dqn_EpochTimeFormat::YYYY_MM_DD:
result = strftime(buf, DQN_CAST(Dqn_usize) buf_len, "%F", date_time);
break;
}
return result;
}
DQN_FILE_SCOPE void Dqn_PerfCounter__Init()
{
#if defined(DQN_OS_WIN32)
if (dqn__lib.win32_qpc_frequency.QuadPart == 0)
QueryPerformanceFrequency(&dqn__lib.win32_qpc_frequency);
#endif
}
DQN_API Dqn_f64 Dqn_PerfCounter_S(Dqn_u64 begin, Dqn_u64 end)
{
Dqn_PerfCounter__Init();
#if defined(DQN_OS_WIN32)
Dqn_u64 ticks = end - begin;
Dqn_f64 result = ticks / DQN_CAST(Dqn_f64)dqn__lib.win32_qpc_frequency.QuadPart;
#endif
return result;
}
DQN_API Dqn_f64 Dqn_PerfCounter_Ms(Dqn_u64 begin, Dqn_u64 end)
{
Dqn_PerfCounter__Init();
#if defined(DQN_OS_WIN32)
Dqn_u64 ticks = end - begin;
Dqn_f64 result = (ticks * 1'000) / DQN_CAST(Dqn_f64)dqn__lib.win32_qpc_frequency.QuadPart;
#endif
return result;
}
DQN_API Dqn_f64 Dqn_PerfCounter_MicroS(Dqn_u64 begin, Dqn_u64 end)
{
Dqn_PerfCounter__Init();
#if defined(DQN_OS_WIN32)
Dqn_u64 ticks = end - begin;
Dqn_f64 result = (ticks * 1'000'000) / DQN_CAST(Dqn_f64)dqn__lib.win32_qpc_frequency.QuadPart;
#endif
return result;
}
DQN_API Dqn_f64 Dqn_PerfCounter_Ns(Dqn_u64 begin, Dqn_u64 end)
{
Dqn_PerfCounter__Init();
#if defined(DQN_OS_WIN32)
Dqn_u64 ticks = end - begin;
Dqn_f64 result = (ticks * 1'000'000'000) / DQN_CAST(Dqn_f64)dqn__lib.win32_qpc_frequency.QuadPart;
#endif
return result;
}
DQN_API Dqn_u64 Dqn_PerfCounter_Now()
{
Dqn_u64 result = 0;
#if defined(DQN_OS_WIN32)
LARGE_INTEGER integer = {};
BOOL qpc_result = QueryPerformanceCounter(&integer);
(void)qpc_result;
DQN_ASSERT_MSG(qpc_result, "MSDN says this can only fail when running on a version older than Windows XP");
result = integer.QuadPart;
#endif
DQN_ASSERT_MSG(result != 0, "Function not implemented");
return result;
}
DQN_API Dqn_Timer Dqn_Timer_Begin()
{
Dqn_Timer result = {};
result.start = Dqn_PerfCounter_Now();
return result;
}
DQN_API void Dqn_Timer_End(Dqn_Timer *timer)
{
timer->end = Dqn_PerfCounter_Now();
}
DQN_API Dqn_f64 Dqn_Timer_S(Dqn_Timer timer)
{
Dqn_f64 result = Dqn_PerfCounter_S(timer.start, timer.end);
return result;
}
DQN_API Dqn_f64 Dqn_Timer_Ms(Dqn_Timer timer)
{
Dqn_f64 result = Dqn_PerfCounter_Ms(timer.start, timer.end);
return result;
}
DQN_API Dqn_f64 Dqn_Timer_MicroS(Dqn_Timer timer)
{
Dqn_f64 result = Dqn_PerfCounter_MicroS(timer.start, timer.end);
return result;
}
DQN_API Dqn_f64 Dqn_Timer_Ns(Dqn_Timer timer)
{
Dqn_f64 result = Dqn_PerfCounter_Ns(timer.start, timer.end);
return result;
}
DQN_API char *Dqn_U64ToStr(Dqn_u64 val, Dqn_U64Str *result, Dqn_b32 comma_sep)
{
int buf_index = (int)(Dqn_ArrayCount(result->buf) - 1);
result->buf[buf_index--] = 0;
if (val == 0)
{
result->buf[buf_index--] = '0';
result->len = 1;
}
else
{
for (int digit_count = 0; val > 0; result->len++, digit_count++)
{
if (comma_sep && (digit_count != 0) && (digit_count % 3 == 0))
{
result->buf[buf_index--] = ',';
result->len++;
}
auto digit = DQN_CAST(char)(val % 10);
result->buf[buf_index--] = '0' + digit;
val /= 10;
}
}
result->str = result->buf + (buf_index + 1);
return result->str;
}
DQN_API char *Dqn_U64ToTempStr(Dqn_u64 val, Dqn_b32 comma_sep)
{
DQN_LOCAL_PERSIST Dqn_U64Str string;
string = {};
char *result = Dqn_U64ToStr(val, &string, comma_sep);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Dqn_Win Implementation
// -------------------------------------------------------------------------------------------------
DQN_API Dqn_String Dqn_Win_LastError(Dqn_ArenaAllocator *arena, int *last_error)
{
DWORD error = GetLastError();
int const MSG_SIZE_BYTES = DQN_KILOBYTES(64) - 1; // Maximum error size
int const MSG_SIZE = MSG_SIZE_BYTES / sizeof(char);
auto * msg = DQN_CAST(char *) Dqn_ArenaAllocator_NewArray(arena, char, MSG_SIZE_BYTES, Dqn_ZeroMem::No);
DWORD msg_length = FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, // DWORD dwFlags,
nullptr, // LPCVOID lpSource,
error, // DWORD dwMessageId,
0, // DWORD dwLanguageId,
msg, // LPSTR lpBuffer,
MSG_SIZE, // DWORD nSize,
nullptr // va_list * Arguments);
);
Dqn_String result = Dqn_String_Init(msg, msg_length);
if (last_error) *last_error = error;
return result;
}
DQN_API void Dqn_Win_DumpLastError(Dqn_ArenaAllocator *tmp_arena, Dqn_String prefix)
{
Dqn_ArenaAllocatorAutoRegion mem_region = Dqn_ArenaAllocator_AutoRegion(tmp_arena);
int last_error = 0;
Dqn_String msg = Dqn_Win_LastError(tmp_arena, &last_error);
if (msg.size)
DQN_LOG_E("%.*s. Error: %.*s", DQN_STRING_FMT(prefix), DQN_STRING_FMT(msg));
else
DQN_LOG_E("%.*s. FormatMessage failed on error: %d with error code: %d\n", DQN_STRING_FMT(prefix), last_error, GetLastError());
}
DQN_API Dqn_StringW Dqn_Win_UTF8ToWChar(Dqn_String src, Dqn_ArenaAllocator *arena)
{
Dqn_StringW result = {};
int size_int = Dqn_Safe_TruncateISizeToInt(src.size);
if (!size_int)
return result;
int required = MultiByteToWideChar(CP_UTF8, 0 /*dwFlags*/, src.str, size_int, nullptr, 0);
if (required == 0)
{
Dqn_ArenaAllocatorAutoRegion mem_region = Dqn_ArenaAllocator_AutoRegion(arena);
Dqn_String error = Dqn_Win_LastError(arena, nullptr);
DQN_LOG_W("Failed to convert string '%.*s' to wide string: %.*s",
DQN_STRING_FMT(src),
DQN_STRING_FMT(error));
return result;
}
wchar_t *string = Dqn_ArenaAllocator_NewArray(arena, wchar_t, required + 1, Dqn_ZeroMem::No);
int string_size = 0;
if (string)
{
string_size = MultiByteToWideChar(CP_UTF8, 0 /*dwFlags*/, src.str, size_int, string, required);
DQN_ASSERT_MSG(string_size != 0, "Error should be handled in the case above");
string[required] = 0;
DQN_ASSERT_MSG(string_size == required, "Sanity check this API");
DQN_ASSERT_MSG(string[required - 1] != 0,
"Sanity check that str[required] was actually the byte that you have to null-terminate, i.e. "
"the character before is not a null character.");
}
result = {string, string_size};
return result;
}
DQN_API Dqn_String Dqn_Win_WCharToUTF8(Dqn_StringW src, Dqn_ArenaAllocator *arena)
{
Dqn_String result = {};
int size_int = Dqn_Safe_TruncateISizeToInt(src.size);
if (!size_int)
return result;
int required = WideCharToMultiByte(CP_UTF8, 0 /*dwFlags*/, src.str, size_int, nullptr, 0, nullptr, nullptr);
if (required == 0)
{
Dqn_ArenaAllocatorAutoRegion mem_region = Dqn_ArenaAllocator_AutoRegion(arena);
Dqn_String error = Dqn_Win_LastError(arena, nullptr);
DQN_LOG_W("Failed to convert wide string '%.*s' to UTF8 string: %.*s",
DQN_STRING_FMT(src),
DQN_STRING_FMT(error));
return result;
}
char *string = Dqn_ArenaAllocator_NewArray(arena, char, required + 1, Dqn_ZeroMem::No);
int string_size = 0;
if (string)
{
string_size = WideCharToMultiByte(CP_UTF8, 0 /*dwFlags*/, src.str, size_int, string, required, nullptr, nullptr);
DQN_ASSERT_MSG(string_size != 0, "Error should be handled in the case above");
string[required] = 0;
DQN_ASSERT_MSG(string_size == required, "Sanity check this API");
DQN_ASSERT_MSG(string[required - 1] != 0,
"Sanity check that string[required] was actually the byte that you have to null-terminate, i.e. "
"the character before is not a null character.");
}
result = Dqn_String_Init(string, string_size);
return result;
}
DQN_API Dqn_String Dqn_Win_CurrentDir(Dqn_ArenaAllocator *arena, Dqn_ArenaAllocator *tmp_arena, Dqn_String suffix)
{
Dqn_StringW w_suffix = Dqn_Win_UTF8ToWChar(suffix, tmp_arena);
Dqn_StringW curr_dir = Dqn_Win_CurrentDirW(tmp_arena, w_suffix);
Dqn_String result = Dqn_Win_WCharToUTF8(curr_dir, arena);
return result;
}
DQN_API Dqn_StringW Dqn_Win_CurrentDirW(Dqn_ArenaAllocator *arena, Dqn_StringW suffix)
{
DQN_ASSERT(suffix.size >= 0);
Dqn_StringW result = {};
// NOTE: required_size is the size required *including* the null-terminator
DWORD required_size = GetCurrentDirectoryW(0, nullptr);
DWORD desired_size = required_size + DQN_CAST(DWORD) suffix.size;
Dqn_ArenaAllocatorRegion mem_region = Dqn_ArenaAllocator_BeginRegion(arena);
wchar_t *w_path = Dqn_ArenaAllocator_NewArray(arena, wchar_t, desired_size, Dqn_ZeroMem::No);
if (!w_path)
result;
DWORD bytes_written_wo_null_terminator = GetCurrentDirectoryW(desired_size, w_path);
if ((bytes_written_wo_null_terminator + 1) != required_size)
{
// TODO(dqn): Error
Dqn_ArenaAllocator_EndRegion(mem_region); // Undo allocations
return result;
}
if (suffix.size)
{
DQN_MEMCOPY(w_path + bytes_written_wo_null_terminator, suffix.str, sizeof(suffix.str[0]) * suffix.size);
w_path[desired_size] = 0;
}
result = {w_path, desired_size - 1};
return result;
}
DQN_API Dqn_Array<Dqn_StringW> Dqn_Win_FolderFilesW(Dqn_StringW path, Dqn_ArenaAllocator *arena)
{
enum Step
{
Step_CountFiles,
Step_Allocate,
Step_Count
};
Dqn_Array<Dqn_StringW> result = {};
Dqn_isize num_files = 0;
for (int step = Step_CountFiles; step < Step_Count; step++)
{
if (step == Step_Allocate)
result = Dqn_Array_InitWithArenaNoGrow(arena, Dqn_StringW, num_files, 0, Dqn_ZeroMem::No);
WIN32_FIND_DATAW find_data = {};
HANDLE find_handle = FindFirstFileExW(path.str, /*LPCWSTR lpFileName,*/
FindExInfoStandard, /*FINDEX_INFO_LEVELS fInfoLevelId,*/
&find_data, /*LPVOID lpFindFileData,*/
FindExSearchNameMatch, /*FINDEX_SEARCH_OPS fSearchOp,*/
nullptr, /*LPVOID lpSearchFilter,*/
FIND_FIRST_EX_LARGE_FETCH /*DWORD dwAdditionalFlags)*/);
if (find_handle == INVALID_HANDLE_VALUE)
return result;
do
{
if (find_data.cFileName[0] == '.' || (find_data.cFileName[0] == '.' && find_data.cFileName[1] == '.'))
{
continue;
}
if (find_data.dwFileAttributes & ~FILE_ATTRIBUTE_DIRECTORY)
{
LARGE_INTEGER file_size = {};
file_size.LowPart = find_data.nFileSizeLow;
file_size.HighPart = find_data.nFileSizeHigh;
if (step == Step_CountFiles)
{
num_files++;
}
else
{
DQN_ASSERT(step == Step_Allocate);
Dqn_StringW *string = Dqn_Array_Make(&result, 1);
string->size = Dqn_StrW_Size(find_data.cFileName);
string->str = Dqn_ArenaAllocator_CopyNullTerminate(arena, wchar_t, find_data.cFileName, string->size);
}
}
} while (FindNextFileW(find_handle, &find_data) != 0);
}
return result;
}
DQN_API Dqn_Array<Dqn_String> Dqn_Win_FolderFiles(Dqn_String path, Dqn_ArenaAllocator *arena, Dqn_ArenaAllocator *tmp_arena)
{
auto mem_region = Dqn_ArenaAllocator_AutoRegion(tmp_arena);
Dqn_StringW w_path = Dqn_Win_UTF8ToWChar(path, tmp_arena);
Dqn_Array<Dqn_StringW> files = Dqn_Win_FolderFilesW(w_path, tmp_arena);
Dqn_Array<Dqn_String> result = Dqn_Array_InitWithArenaNoGrow(arena, Dqn_String, files.size, 0, Dqn_ZeroMem::No);
for (Dqn_StringW file : files)
Dqn_Array_Add(&result, Dqn_Win_WCharToUTF8(file, arena));
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Hashing - Dqn_FNV1A[32|64]
// -------------------------------------------------------------------------------------------------
//
// Default values recommended by: http://isthe.com/chongo/tech/comp/fnv/
//
DQN_API Dqn_u32 Dqn_FNV1A32_Iterate(void const *bytes, Dqn_isize size, Dqn_u32 hash)
{
auto buffer = DQN_CAST(Dqn_u8 const *)bytes;
for (Dqn_isize i = 0; i < size; i++)
hash = (buffer[i] ^ hash) * 16777619 /*FNV Prime*/;
return hash;
}
DQN_API Dqn_u32 Dqn_FNV1A32_Hash(void const *bytes, Dqn_isize size)
{
Dqn_u32 result = Dqn_FNV1A32_Iterate(bytes, size, DQN_FNV1A32_SEED);
return result;
}
DQN_API Dqn_u64 Dqn_FNV1A64_Iterate(void const *bytes, Dqn_isize size, Dqn_u64 hash)
{
auto buffer = DQN_CAST(Dqn_u8 const *)bytes;
for (Dqn_isize i = 0; i < size; i++)
hash = (buffer[i] ^ hash) * 1099511628211 /*FNV Prime*/;
return hash;
}
DQN_API Dqn_u64 Dqn_FNV1A64_Hash(void const *bytes, Dqn_isize size)
{
Dqn_u64 result = Dqn_FNV1A64_Iterate(bytes, size, DQN_FNV1A64_SEED);
return result;
}
// -------------------------------------------------------------------------------------------------
// NOTE: Hashing - Dqn_MurmurHash3
// -------------------------------------------------------------------------------------------------
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
#define DQN_MMH3_FORCE_INLINE __forceinline
#define DQN_MMH3_ROTL32(x, y) _rotl(x, y)
#define DQN_MMH3_ROTL64(x, y) _rotl64(x, y)
#else
#define DQN_MMH3_FORCE_INLINE inline __attribute__((always_inline))
#define DQN_MMH3_ROTL32(x, y) ((x) << (y)) | ((x) >> (32 - (y)))
#define DQN_MMH3_ROTL64(x, y) ((x) << (y)) | ((x) >> (64 - (y)))
#endif
//-----------------------------------------------------------------------------
// Block read - if your platform needs to do endian-swapping or can only
// handle aligned reads, do the conversion here
DQN_MMH3_FORCE_INLINE Dqn_u32 Dqn_MurmurHash3__GetBlock32(Dqn_u32 const *p, int i)
{
return p[i];
}
DQN_MMH3_FORCE_INLINE Dqn_u64 Dqn_MurmurHash3__GetBlock64(Dqn_u64 const *p, int i)
{
return p[i];
}
//-----------------------------------------------------------------------------
// Finalization mix - force all bits of a hash block to avalanche
DQN_MMH3_FORCE_INLINE Dqn_u32 Dqn_MurmurHash3__FMix32(Dqn_u32 h)
{
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return h;
}
DQN_MMH3_FORCE_INLINE Dqn_u64 Dqn_MurmurHash3__FMix64(Dqn_u64 k)
{
k ^= k >> 33;
k *= 0xff51afd7ed558ccd;
k ^= k >> 33;
k *= 0xc4ceb9fe1a85ec53;
k ^= k >> 33;
return k;
}
DQN_API Dqn_u32 Dqn_MurmurHash3_x86_32(void const *key, int len, Dqn_u32 seed)
{
const Dqn_u8 *data = (const Dqn_u8 *)key;
const int nblocks = len / 4;
Dqn_u32 h1 = seed;
const Dqn_u32 c1 = 0xcc9e2d51;
const Dqn_u32 c2 = 0x1b873593;
//----------
// body
const Dqn_u32 *blocks = (const Dqn_u32 *)(data + nblocks * 4);
for (int i = -nblocks; i; i++)
{
Dqn_u32 k1 = Dqn_MurmurHash3__GetBlock32(blocks, i);
k1 *= c1;
k1 = DQN_MMH3_ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
h1 = DQN_MMH3_ROTL32(h1, 13);
h1 = h1 * 5 + 0xe6546b64;
}
//----------
// tail
const Dqn_u8 *tail = (const Dqn_u8 *)(data + nblocks * 4);
Dqn_u32 k1 = 0;
switch (len & 3)
{
case 3:
k1 ^= tail[2] << 16;
case 2:
k1 ^= tail[1] << 8;
case 1:
k1 ^= tail[0];
k1 *= c1;
k1 = DQN_MMH3_ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
};
//----------
// finalization
h1 ^= len;
h1 = Dqn_MurmurHash3__FMix32(h1);
return h1;
}
DQN_API Dqn_MurmurHash3_128 Dqn_MurmurHash3_x64_128(void const *key, int len, Dqn_u32 seed)
{
const Dqn_u8 *data = (const Dqn_u8 *)key;
const int nblocks = len / 16;
Dqn_u64 h1 = seed;
Dqn_u64 h2 = seed;
const Dqn_u64 c1 = 0x87c37b91114253d5;
const Dqn_u64 c2 = 0x4cf5ad432745937f;
//----------
// body
const Dqn_u64 *blocks = (const Dqn_u64 *)(data);
for (int i = 0; i < nblocks; i++)
{
Dqn_u64 k1 = Dqn_MurmurHash3__GetBlock64(blocks, i * 2 + 0);
Dqn_u64 k2 = Dqn_MurmurHash3__GetBlock64(blocks, i * 2 + 1);
k1 *= c1;
k1 = DQN_MMH3_ROTL64(k1, 31);
k1 *= c2;
h1 ^= k1;
h1 = DQN_MMH3_ROTL64(h1, 27);
h1 += h2;
h1 = h1 * 5 + 0x52dce729;
k2 *= c2;
k2 = DQN_MMH3_ROTL64(k2, 33);
k2 *= c1;
h2 ^= k2;
h2 = DQN_MMH3_ROTL64(h2, 31);
h2 += h1;
h2 = h2 * 5 + 0x38495ab5;
}
//----------
// tail
const Dqn_u8 *tail = (const Dqn_u8 *)(data + nblocks * 16);
Dqn_u64 k1 = 0;
Dqn_u64 k2 = 0;
switch (len & 15)
{
case 15:
k2 ^= ((Dqn_u64)tail[14]) << 48;
case 14:
k2 ^= ((Dqn_u64)tail[13]) << 40;
case 13:
k2 ^= ((Dqn_u64)tail[12]) << 32;
case 12:
k2 ^= ((Dqn_u64)tail[11]) << 24;
case 11:
k2 ^= ((Dqn_u64)tail[10]) << 16;
case 10:
k2 ^= ((Dqn_u64)tail[9]) << 8;
case 9:
k2 ^= ((Dqn_u64)tail[8]) << 0;
k2 *= c2;
k2 = DQN_MMH3_ROTL64(k2, 33);
k2 *= c1;
h2 ^= k2;
case 8:
k1 ^= ((Dqn_u64)tail[7]) << 56;
case 7:
k1 ^= ((Dqn_u64)tail[6]) << 48;
case 6:
k1 ^= ((Dqn_u64)tail[5]) << 40;
case 5:
k1 ^= ((Dqn_u64)tail[4]) << 32;
case 4:
k1 ^= ((Dqn_u64)tail[3]) << 24;
case 3:
k1 ^= ((Dqn_u64)tail[2]) << 16;
case 2:
k1 ^= ((Dqn_u64)tail[1]) << 8;
case 1:
k1 ^= ((Dqn_u64)tail[0]) << 0;
k1 *= c1;
k1 = DQN_MMH3_ROTL64(k1, 31);
k1 *= c2;
h1 ^= k1;
};
//----------
// finalization
h1 ^= len;
h2 ^= len;
h1 += h2;
h2 += h1;
h1 = Dqn_MurmurHash3__FMix64(h1);
h2 = Dqn_MurmurHash3__FMix64(h2);
h1 += h2;
h2 += h1;
Dqn_MurmurHash3_128 result = {};
result.e[0] = h1;
result.e[1] = h2;
return result;
}
//-----------------------------------------------------------------------------
#endif // DQN_IMPLEMENTATION
#if !defined(DQN_STB_SPRINTF_HEADER_ONLY)
#define STB_SPRINTF_IMPLEMENTATION
#ifdef STB_SPRINTF_IMPLEMENTATION
#define stbsp__uint32 unsigned int
#define stbsp__int32 signed int
#ifdef _MSC_VER
#define stbsp__uint64 unsigned __int64
#define stbsp__int64 signed __int64
#else
#define stbsp__uint64 unsigned long long
#define stbsp__int64 signed long long
#endif
#define stbsp__uint16 unsigned short
#ifndef stbsp__uintptr
#if defined(__ppc64__) || defined(__powerpc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__s390x__)
#define stbsp__uintptr stbsp__uint64
#else
#define stbsp__uintptr stbsp__uint32
#endif
#endif
#ifndef STB_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC)
#if defined(_MSC_VER) && (_MSC_VER < 1900)
#define STB_SPRINTF_MSVC_MODE
#endif
#endif
#ifdef STB_SPRINTF_NOUNALIGNED // define this before inclusion to force stbsp_sprintf to always use aligned accesses
#define STBSP__UNALIGNED(code)
#else
#define STBSP__UNALIGNED(code) code
#endif
#ifndef STB_SPRINTF_NOFLOAT
// internal float utility functions
static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits);
static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value);
#define STBSP__SPECIAL 0x7000
#endif
static char stbsp__period = '.';
static char stbsp__comma = ',';
static struct
{
short temp; // force next field to be 2-byte aligned
char pair[201];
} stbsp__digitpair =
{
0,
"00010203040506070809101112131415161718192021222324"
"25262728293031323334353637383940414243444546474849"
"50515253545556575859606162636465666768697071727374"
"75767778798081828384858687888990919293949596979899"
};
STBSP__PUBLICDEF void STB_SPRINTF_DECORATE(set_separators)(char pcomma, char pperiod)
{
stbsp__period = pperiod;
stbsp__comma = pcomma;
}
#define STBSP__LEFTJUST 1
#define STBSP__LEADINGPLUS 2
#define STBSP__LEADINGSPACE 4
#define STBSP__LEADING_0X 8
#define STBSP__LEADINGZERO 16
#define STBSP__INTMAX 32
#define STBSP__TRIPLET_COMMA 64
#define STBSP__NEGATIVE 128
#define STBSP__METRIC_SUFFIX 256
#define STBSP__HALFWIDTH 512
#define STBSP__METRIC_NOSPACE 1024
#define STBSP__METRIC_1024 2048
#define STBSP__METRIC_JEDEC 4096
static void stbsp__lead_sign(stbsp__uint32 fl, char *sign)
{
sign[0] = 0;
if (fl & STBSP__NEGATIVE) {
sign[0] = 1;
sign[1] = '-';
} else if (fl & STBSP__LEADINGSPACE) {
sign[0] = 1;
sign[1] = ' ';
} else if (fl & STBSP__LEADINGPLUS) {
sign[0] = 1;
sign[1] = '+';
}
}
static STBSP__ASAN stbsp__uint32 stbsp__strlen_limited(char const *s, stbsp__uint32 limit)
{
char const * sn = s;
// get up to 4-byte alignment
for (;;) {
if (((stbsp__uintptr)sn & 3) == 0)
break;
if (!limit || *sn == 0)
return (stbsp__uint32)(sn - s);
++sn;
--limit;
}
// scan over 4 bytes at a time to find terminating 0
// this will intentionally scan up to 3 bytes past the end of buffers,
// but becase it works 4B aligned, it will never cross page boundaries
// (hence the STBSP__ASAN markup; the over-read here is intentional
// and harmless)
while (limit >= 4) {
stbsp__uint32 v = *(stbsp__uint32 *)sn;
// bit hack to find if there's a 0 byte in there
if ((v - 0x01010101) & (~v) & 0x80808080UL)
break;
sn += 4;
limit -= 4;
}
// handle the last few characters to find actual size
while (limit && *sn) {
++sn;
--limit;
}
return (stbsp__uint32)(sn - s);
}
STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va)
{
static char hex[] = "0123456789abcdefxp";
static char hexu[] = "0123456789ABCDEFXP";
char *bf;
char const *f;
int tlen = 0;
bf = buf;
f = fmt;
for (;;) {
stbsp__int32 fw, pr, tz;
stbsp__uint32 fl;
// macros for the callback buffer stuff
#define stbsp__chk_cb_bufL(bytes) \
{ \
int len = (int)(bf - buf); \
if ((len + (bytes)) >= STB_SPRINTF_MIN) { \
tlen += len; \
if (0 == (bf = buf = callback(buf, user, len))) \
goto done; \
} \
}
#define stbsp__chk_cb_buf(bytes) \
{ \
if (callback) { \
stbsp__chk_cb_bufL(bytes); \
} \
}
#define stbsp__flush_cb() \
{ \
stbsp__chk_cb_bufL(STB_SPRINTF_MIN - 1); \
} // flush if there is even one byte in the buffer
#define stbsp__cb_buf_clamp(cl, v) \
cl = v; \
if (callback) { \
int lg = STB_SPRINTF_MIN - (int)(bf - buf); \
if (cl > lg) \
cl = lg; \
}
// fast copy everything up to the next % (or end of string)
for (;;) {
while (((stbsp__uintptr)f) & 3) {
schk1:
if (f[0] == '%')
goto scandd;
schk2:
if (f[0] == 0)
goto endfmt;
stbsp__chk_cb_buf(1);
*bf++ = f[0];
++f;
}
for (;;) {
// Check if the next 4 bytes contain %(0x25) or end of string.
// Using the 'hasless' trick:
// https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
stbsp__uint32 v, c;
v = *(stbsp__uint32 *)f;
c = (~v) & 0x80808080;
if (((v ^ 0x25252525) - 0x01010101) & c)
goto schk1;
if ((v - 0x01010101) & c)
goto schk2;
if (callback)
if ((STB_SPRINTF_MIN - (int)(bf - buf)) < 4)
goto schk1;
#ifdef STB_SPRINTF_NOUNALIGNED
if(((stbsp__uintptr)bf) & 3) {
bf[0] = f[0];
bf[1] = f[1];
bf[2] = f[2];
bf[3] = f[3];
} else
#endif
{
*(stbsp__uint32 *)bf = v;
}
bf += 4;
f += 4;
}
}
scandd:
++f;
// ok, we have a percent, read the modifiers first
fw = 0;
pr = -1;
fl = 0;
tz = 0;
// flags
for (;;) {
switch (f[0]) {
// if we have left justify
case '-':
fl |= STBSP__LEFTJUST;
++f;
continue;
// if we have leading plus
case '+':
fl |= STBSP__LEADINGPLUS;
++f;
continue;
// if we have leading space
case ' ':
fl |= STBSP__LEADINGSPACE;
++f;
continue;
// if we have leading 0x
case '#':
fl |= STBSP__LEADING_0X;
++f;
continue;
// if we have thousand commas
case '\'':
fl |= STBSP__TRIPLET_COMMA;
++f;
continue;
// if we have kilo marker (none->kilo->kibi->jedec)
case '$':
if (fl & STBSP__METRIC_SUFFIX) {
if (fl & STBSP__METRIC_1024) {
fl |= STBSP__METRIC_JEDEC;
} else {
fl |= STBSP__METRIC_1024;
}
} else {
fl |= STBSP__METRIC_SUFFIX;
}
++f;
continue;
// if we don't want space between metric suffix and number
case '_':
fl |= STBSP__METRIC_NOSPACE;
++f;
continue;
// if we have leading zero
case '0':
fl |= STBSP__LEADINGZERO;
++f;
goto flags_done;
default: goto flags_done;
}
}
flags_done:
// get the field width
if (f[0] == '*') {
fw = va_arg(va, stbsp__uint32);
++f;
} else {
while ((f[0] >= '0') && (f[0] <= '9')) {
fw = fw * 10 + f[0] - '0';
f++;
}
}
// get the precision
if (f[0] == '.') {
++f;
if (f[0] == '*') {
pr = va_arg(va, stbsp__uint32);
++f;
} else {
pr = 0;
while ((f[0] >= '0') && (f[0] <= '9')) {
pr = pr * 10 + f[0] - '0';
f++;
}
}
}
// handle integer size overrides
switch (f[0]) {
// are we halfwidth?
case 'h':
fl |= STBSP__HALFWIDTH;
++f;
if (f[0] == 'h')
++f; // QUARTERWIDTH
break;
// are we 64-bit (unix style)
case 'l':
fl |= ((sizeof(long) == 8) ? STBSP__INTMAX : 0);
++f;
if (f[0] == 'l') {
fl |= STBSP__INTMAX;
++f;
}
break;
// are we 64-bit on intmax? (c99)
case 'j':
fl |= (sizeof(size_t) == 8) ? STBSP__INTMAX : 0;
++f;
break;
// are we 64-bit on size_t or ptrdiff_t? (c99)
case 'z':
fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
++f;
break;
case 't':
fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
++f;
break;
// are we 64-bit (msft style)
case 'I':
if ((f[1] == '6') && (f[2] == '4')) {
fl |= STBSP__INTMAX;
f += 3;
} else if ((f[1] == '3') && (f[2] == '2')) {
f += 3;
} else {
fl |= ((sizeof(void *) == 8) ? STBSP__INTMAX : 0);
++f;
}
break;
default: break;
}
// handle each replacement
switch (f[0]) {
#define STBSP__NUMSZ 512 // big enough for e308 (with commas) or e-307
char num[STBSP__NUMSZ];
char lead[8];
char tail[8];
char *s;
char const *h;
stbsp__uint32 l, n, cs;
stbsp__uint64 n64;
#ifndef STB_SPRINTF_NOFLOAT
double fv;
#endif
stbsp__int32 dp;
char const *sn;
case 's':
// get the string
s = va_arg(va, char *);
if (s == 0)
s = (char *)"null";
// get the length, limited to desired precision
// always limit to ~0u chars since our counts are 32b
l = stbsp__strlen_limited(s, (pr >= 0) ? pr : ~0u);
lead[0] = 0;
tail[0] = 0;
pr = 0;
dp = 0;
cs = 0;
// copy the string in
goto scopy;
case 'c': // char
// get the character
s = num + STBSP__NUMSZ - 1;
*s = (char)va_arg(va, int);
l = 1;
lead[0] = 0;
tail[0] = 0;
pr = 0;
dp = 0;
cs = 0;
goto scopy;
case 'n': // weird write-bytes specifier
{
int *d = va_arg(va, int *);
*d = tlen + (int)(bf - buf);
} break;
#ifdef STB_SPRINTF_NOFLOAT
case 'A': // float
case 'a': // hex float
case 'G': // float
case 'g': // float
case 'E': // float
case 'e': // float
case 'f': // float
va_arg(va, double); // eat it
s = (char *)"No float";
l = 8;
lead[0] = 0;
tail[0] = 0;
pr = 0;
cs = 0;
STBSP__NOTUSED(dp);
goto scopy;
#else
case 'A': // hex float
case 'a': // hex float
h = (f[0] == 'A') ? hexu : hex;
fv = va_arg(va, double);
if (pr == -1)
pr = 6; // default is 6
// read the double into a string
if (stbsp__real_to_parts((stbsp__int64 *)&n64, &dp, fv))
fl |= STBSP__NEGATIVE;
s = num + 64;
stbsp__lead_sign(fl, lead);
if (dp == -1023)
dp = (n64) ? -1022 : 0;
else
n64 |= (((stbsp__uint64)1) << 52);
n64 <<= (64 - 56);
if (pr < 15)
n64 += ((((stbsp__uint64)8) << 56) >> (pr * 4));
// add leading chars
#ifdef STB_SPRINTF_MSVC_MODE
*s++ = '0';
*s++ = 'x';
#else
lead[1 + lead[0]] = '0';
lead[2 + lead[0]] = 'x';
lead[0] += 2;
#endif
*s++ = h[(n64 >> 60) & 15];
n64 <<= 4;
if (pr)
*s++ = stbsp__period;
sn = s;
// print the bits
n = pr;
if (n > 13)
n = 13;
if (pr > (stbsp__int32)n)
tz = pr - n;
pr = 0;
while (n--) {
*s++ = h[(n64 >> 60) & 15];
n64 <<= 4;
}
// print the expo
tail[1] = h[17];
if (dp < 0) {
tail[2] = '-';
dp = -dp;
} else
tail[2] = '+';
n = (dp >= 1000) ? 6 : ((dp >= 100) ? 5 : ((dp >= 10) ? 4 : 3));
tail[0] = (char)n;
for (;;) {
tail[n] = '0' + dp % 10;
if (n <= 3)
break;
--n;
dp /= 10;
}
dp = (int)(s - sn);
l = (int)(s - (num + 64));
s = num + 64;
cs = 1 + (3 << 24);
goto scopy;
case 'G': // float
case 'g': // float
h = (f[0] == 'G') ? hexu : hex;
fv = va_arg(va, double);
if (pr == -1)
pr = 6;
else if (pr == 0)
pr = 1; // default is 6
// read the double into a string
if (stbsp__real_to_str(&sn, &l, num, &dp, fv, (pr - 1) | 0x80000000))
fl |= STBSP__NEGATIVE;
// clamp the precision and delete extra zeros after clamp
n = pr;
if (l > (stbsp__uint32)pr)
l = pr;
while ((l > 1) && (pr) && (sn[l - 1] == '0')) {
--pr;
--l;
}
// should we use %e
if ((dp <= -4) || (dp > (stbsp__int32)n)) {
if (pr > (stbsp__int32)l)
pr = l - 1;
else if (pr)
--pr; // when using %e, there is one digit before the decimal
goto doexpfromg;
}
// this is the insane action to get the pr to match %g semantics for %f
if (dp > 0) {
pr = (dp < (stbsp__int32)l) ? l - dp : 0;
} else {
pr = -dp + ((pr > (stbsp__int32)l) ? (stbsp__int32) l : pr);
}
goto dofloatfromg;
case 'E': // float
case 'e': // float
h = (f[0] == 'E') ? hexu : hex;
fv = va_arg(va, double);
if (pr == -1)
pr = 6; // default is 6
// read the double into a string
if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr | 0x80000000))
fl |= STBSP__NEGATIVE;
doexpfromg:
tail[0] = 0;
stbsp__lead_sign(fl, lead);
if (dp == STBSP__SPECIAL) {
s = (char *)sn;
cs = 0;
pr = 0;
goto scopy;
}
s = num + 64;
// handle leading chars
*s++ = sn[0];
if (pr)
*s++ = stbsp__period;
// handle after decimal
if ((l - 1) > (stbsp__uint32)pr)
l = pr + 1;
for (n = 1; n < l; n++)
*s++ = sn[n];
// trailing zeros
tz = pr - (l - 1);
pr = 0;
// dump expo
tail[1] = h[0xe];
dp -= 1;
if (dp < 0) {
tail[2] = '-';
dp = -dp;
} else
tail[2] = '+';
#ifdef STB_SPRINTF_MSVC_MODE
n = 5;
#else
n = (dp >= 100) ? 5 : 4;
#endif
tail[0] = (char)n;
for (;;) {
tail[n] = '0' + dp % 10;
if (n <= 3)
break;
--n;
dp /= 10;
}
cs = 1 + (3 << 24); // how many tens
goto flt_lead;
case 'f': // float
fv = va_arg(va, double);
doafloat:
// do kilos
if (fl & STBSP__METRIC_SUFFIX) {
double divisor;
divisor = 1000.0f;
if (fl & STBSP__METRIC_1024)
divisor = 1024.0;
while (fl < 0x4000000) {
if ((fv < divisor) && (fv > -divisor))
break;
fv /= divisor;
fl += 0x1000000;
}
}
if (pr == -1)
pr = 6; // default is 6
// read the double into a string
if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr))
fl |= STBSP__NEGATIVE;
dofloatfromg:
tail[0] = 0;
stbsp__lead_sign(fl, lead);
if (dp == STBSP__SPECIAL) {
s = (char *)sn;
cs = 0;
pr = 0;
goto scopy;
}
s = num + 64;
// handle the three decimal varieties
if (dp <= 0) {
stbsp__int32 i;
// handle 0.000*000xxxx
*s++ = '0';
if (pr)
*s++ = stbsp__period;
n = -dp;
if ((stbsp__int32)n > pr)
n = pr;
i = n;
while (i) {
if ((((stbsp__uintptr)s) & 3) == 0)
break;
*s++ = '0';
--i;
}
while (i >= 4) {
*(stbsp__uint32 *)s = 0x30303030;
s += 4;
i -= 4;
}
while (i) {
*s++ = '0';
--i;
}
if ((stbsp__int32)(l + n) > pr)
l = pr - n;
i = l;
while (i) {
*s++ = *sn++;
--i;
}
tz = pr - (n + l);
cs = 1 + (3 << 24); // how many tens did we write (for commas below)
} else {
cs = (fl & STBSP__TRIPLET_COMMA) ? ((600 - (stbsp__uint32)dp) % 3) : 0;
if ((stbsp__uint32)dp >= l) {
// handle xxxx000*000.0
n = 0;
for (;;) {
if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
cs = 0;
*s++ = stbsp__comma;
} else {
*s++ = sn[n];
++n;
if (n >= l)
break;
}
}
if (n < (stbsp__uint32)dp) {
n = dp - n;
if ((fl & STBSP__TRIPLET_COMMA) == 0) {
while (n) {
if ((((stbsp__uintptr)s) & 3) == 0)
break;
*s++ = '0';
--n;
}
while (n >= 4) {
*(stbsp__uint32 *)s = 0x30303030;
s += 4;
n -= 4;
}
}
while (n) {
if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
cs = 0;
*s++ = stbsp__comma;
} else {
*s++ = '0';
--n;
}
}
}
cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
if (pr) {
*s++ = stbsp__period;
tz = pr;
}
} else {
// handle xxxxx.xxxx000*000
n = 0;
for (;;) {
if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
cs = 0;
*s++ = stbsp__comma;
} else {
*s++ = sn[n];
++n;
if (n >= (stbsp__uint32)dp)
break;
}
}
cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
if (pr)
*s++ = stbsp__period;
if ((l - dp) > (stbsp__uint32)pr)
l = pr + dp;
while (n < l) {
*s++ = sn[n];
++n;
}
tz = pr - (l - dp);
}
}
pr = 0;
// handle k,m,g,t
if (fl & STBSP__METRIC_SUFFIX) {
char idx;
idx = 1;
if (fl & STBSP__METRIC_NOSPACE)
idx = 0;
tail[0] = idx;
tail[1] = ' ';
{
if (fl >> 24) { // SI kilo is 'k', JEDEC and SI kibits are 'K'.
if (fl & STBSP__METRIC_1024)
tail[idx + 1] = "_KMGT"[fl >> 24];
else
tail[idx + 1] = "_kMGT"[fl >> 24];
idx++;
// If printing kibits and not in jedec, add the 'i'.
if (fl & STBSP__METRIC_1024 && !(fl & STBSP__METRIC_JEDEC)) {
tail[idx + 1] = 'i';
idx++;
}
tail[0] = idx;
}
}
};
flt_lead:
// get the length that we copied
l = (stbsp__uint32)(s - (num + 64));
s = num + 64;
goto scopy;
#endif
case 'B': // upper binary
case 'b': // lower binary
h = (f[0] == 'B') ? hexu : hex;
lead[0] = 0;
if (fl & STBSP__LEADING_0X) {
lead[0] = 2;
lead[1] = '0';
lead[2] = h[0xb];
}
l = (8 << 4) | (1 << 8);
goto radixnum;
case 'o': // octal
h = hexu;
lead[0] = 0;
if (fl & STBSP__LEADING_0X) {
lead[0] = 1;
lead[1] = '0';
}
l = (3 << 4) | (3 << 8);
goto radixnum;
case 'p': // pointer
fl |= (sizeof(void *) == 8) ? STBSP__INTMAX : 0;
pr = sizeof(void *) * 2;
fl &= ~STBSP__LEADINGZERO; // 'p' only prints the pointer with zeros
// fall through - to X
case 'X': // upper hex
case 'x': // lower hex
h = (f[0] == 'X') ? hexu : hex;
l = (4 << 4) | (4 << 8);
lead[0] = 0;
if (fl & STBSP__LEADING_0X) {
lead[0] = 2;
lead[1] = '0';
lead[2] = h[16];
}
radixnum:
// get the number
if (fl & STBSP__INTMAX)
n64 = va_arg(va, stbsp__uint64);
else
n64 = va_arg(va, stbsp__uint32);
s = num + STBSP__NUMSZ;
dp = 0;
// clear tail, and clear leading if value is zero
tail[0] = 0;
if (n64 == 0) {
lead[0] = 0;
if (pr == 0) {
l = 0;
cs = 0;
goto scopy;
}
}
// convert to string
for (;;) {
*--s = h[n64 & ((1 << (l >> 8)) - 1)];
n64 >>= (l >> 8);
if (!((n64) || ((stbsp__int32)((num + STBSP__NUMSZ) - s) < pr)))
break;
if (fl & STBSP__TRIPLET_COMMA) {
++l;
if ((l & 15) == ((l >> 4) & 15)) {
l &= ~15;
*--s = stbsp__comma;
}
}
};
// get the tens and the comma pos
cs = (stbsp__uint32)((num + STBSP__NUMSZ) - s) + ((((l >> 4) & 15)) << 24);
// get the length that we copied
l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
// copy it
goto scopy;
case 'u': // unsigned
case 'i':
case 'd': // integer
// get the integer and abs it
if (fl & STBSP__INTMAX) {
stbsp__int64 i64 = va_arg(va, stbsp__int64);
n64 = (stbsp__uint64)i64;
if ((f[0] != 'u') && (i64 < 0)) {
n64 = (stbsp__uint64)-i64;
fl |= STBSP__NEGATIVE;
}
} else {
stbsp__int32 i = va_arg(va, stbsp__int32);
n64 = (stbsp__uint32)i;
if ((f[0] != 'u') && (i < 0)) {
n64 = (stbsp__uint32)-i;
fl |= STBSP__NEGATIVE;
}
}
#ifndef STB_SPRINTF_NOFLOAT
if (fl & STBSP__METRIC_SUFFIX) {
if (n64 < 1024)
pr = 0;
else if (pr == -1)
pr = 1;
fv = (double)(stbsp__int64)n64;
goto doafloat;
}
#endif
// convert to string
s = num + STBSP__NUMSZ;
l = 0;
for (;;) {
// do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators)
char *o = s - 8;
if (n64 >= 100000000) {
n = (stbsp__uint32)(n64 % 100000000);
n64 /= 100000000;
} else {
n = (stbsp__uint32)n64;
n64 = 0;
}
if ((fl & STBSP__TRIPLET_COMMA) == 0) {
do {
s -= 2;
*(stbsp__uint16 *)s = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
n /= 100;
} while (n);
}
while (n) {
if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
l = 0;
*--s = stbsp__comma;
--o;
} else {
*--s = (char)(n % 10) + '0';
n /= 10;
}
}
if (n64 == 0) {
if ((s[0] == '0') && (s != (num + STBSP__NUMSZ)))
++s;
break;
}
while (s != o)
if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
l = 0;
*--s = stbsp__comma;
--o;
} else {
*--s = '0';
}
}
tail[0] = 0;
stbsp__lead_sign(fl, lead);
// get the length that we copied
l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
if (l == 0) {
*--s = '0';
l = 1;
}
cs = l + (3 << 24);
if (pr < 0)
pr = 0;
scopy:
// get fw=leading/trailing space, pr=leading zeros
if (pr < (stbsp__int32)l)
pr = l;
n = pr + lead[0] + tail[0] + tz;
if (fw < (stbsp__int32)n)
fw = n;
fw -= n;
pr -= l;
// handle right justify and leading zeros
if ((fl & STBSP__LEFTJUST) == 0) {
if (fl & STBSP__LEADINGZERO) // if leading zeros, everything is in pr
{
pr = (fw > pr) ? fw : pr;
fw = 0;
} else {
fl &= ~STBSP__TRIPLET_COMMA; // if no leading zeros, then no commas
}
}
// copy the spaces and/or zeros
if (fw + pr) {
stbsp__int32 i;
stbsp__uint32 c;
// copy leading spaces (or when doing %8.4d stuff)
if ((fl & STBSP__LEFTJUST) == 0)
while (fw > 0) {
stbsp__cb_buf_clamp(i, fw);
fw -= i;
while (i) {
if ((((stbsp__uintptr)bf) & 3) == 0)
break;
*bf++ = ' ';
--i;
}
while (i >= 4) {
*(stbsp__uint32 *)bf = 0x20202020;
bf += 4;
i -= 4;
}
while (i) {
*bf++ = ' ';
--i;
}
stbsp__chk_cb_buf(1);
}
// copy leader
sn = lead + 1;
while (lead[0]) {
stbsp__cb_buf_clamp(i, lead[0]);
lead[0] -= (char)i;
while (i) {
*bf++ = *sn++;
--i;
}
stbsp__chk_cb_buf(1);
}
// copy leading zeros
c = cs >> 24;
cs &= 0xffffff;
cs = (fl & STBSP__TRIPLET_COMMA) ? ((stbsp__uint32)(c - ((pr + cs) % (c + 1)))) : 0;
while (pr > 0) {
stbsp__cb_buf_clamp(i, pr);
pr -= i;
if ((fl & STBSP__TRIPLET_COMMA) == 0) {
while (i) {
if ((((stbsp__uintptr)bf) & 3) == 0)
break;
*bf++ = '0';
--i;
}
while (i >= 4) {
*(stbsp__uint32 *)bf = 0x30303030;
bf += 4;
i -= 4;
}
}
while (i) {
if ((fl & STBSP__TRIPLET_COMMA) && (cs++ == c)) {
cs = 0;
*bf++ = stbsp__comma;
} else
*bf++ = '0';
--i;
}
stbsp__chk_cb_buf(1);
}
}
// copy leader if there is still one
sn = lead + 1;
while (lead[0]) {
stbsp__int32 i;
stbsp__cb_buf_clamp(i, lead[0]);
lead[0] -= (char)i;
while (i) {
*bf++ = *sn++;
--i;
}
stbsp__chk_cb_buf(1);
}
// copy the string
n = l;
while (n) {
stbsp__int32 i;
stbsp__cb_buf_clamp(i, n);
n -= i;
STBSP__UNALIGNED(while (i >= 4) {
*(stbsp__uint32 volatile *)bf = *(stbsp__uint32 volatile *)s;
bf += 4;
s += 4;
i -= 4;
})
while (i) {
*bf++ = *s++;
--i;
}
stbsp__chk_cb_buf(1);
}
// copy trailing zeros
while (tz) {
stbsp__int32 i;
stbsp__cb_buf_clamp(i, tz);
tz -= i;
while (i) {
if ((((stbsp__uintptr)bf) & 3) == 0)
break;
*bf++ = '0';
--i;
}
while (i >= 4) {
*(stbsp__uint32 *)bf = 0x30303030;
bf += 4;
i -= 4;
}
while (i) {
*bf++ = '0';
--i;
}
stbsp__chk_cb_buf(1);
}
// copy tail if there is one
sn = tail + 1;
while (tail[0]) {
stbsp__int32 i;
stbsp__cb_buf_clamp(i, tail[0]);
tail[0] -= (char)i;
while (i) {
*bf++ = *sn++;
--i;
}
stbsp__chk_cb_buf(1);
}
// handle the left justify
if (fl & STBSP__LEFTJUST)
if (fw > 0) {
while (fw) {
stbsp__int32 i;
stbsp__cb_buf_clamp(i, fw);
fw -= i;
while (i) {
if ((((stbsp__uintptr)bf) & 3) == 0)
break;
*bf++ = ' ';
--i;
}
while (i >= 4) {
*(stbsp__uint32 *)bf = 0x20202020;
bf += 4;
i -= 4;
}
while (i--)
*bf++ = ' ';
stbsp__chk_cb_buf(1);
}
}
break;
default: // unknown, just copy code
s = num + STBSP__NUMSZ - 1;
*s = f[0];
l = 1;
fw = fl = 0;
lead[0] = 0;
tail[0] = 0;
pr = 0;
dp = 0;
cs = 0;
goto scopy;
}
++f;
}
endfmt:
if (!callback)
*bf = 0;
else
stbsp__flush_cb();
done:
return tlen + (int)(bf - buf);
}
// cleanup
#undef STBSP__LEFTJUST
#undef STBSP__LEADINGPLUS
#undef STBSP__LEADINGSPACE
#undef STBSP__LEADING_0X
#undef STBSP__LEADINGZERO
#undef STBSP__INTMAX
#undef STBSP__TRIPLET_COMMA
#undef STBSP__NEGATIVE
#undef STBSP__METRIC_SUFFIX
#undef STBSP__NUMSZ
#undef stbsp__chk_cb_bufL
#undef stbsp__chk_cb_buf
#undef stbsp__flush_cb
#undef stbsp__cb_buf_clamp
// ============================================================================
// wrapper functions
STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...)
{
int result;
va_list va;
va_start(va, fmt);
result = STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
va_end(va);
return result;
}
typedef struct stbsp__context {
char *buf;
int count;
int length;
char tmp[STB_SPRINTF_MIN];
} stbsp__context;
static char *stbsp__clamp_callback(const char *buf, void *user, int len)
{
stbsp__context *c = (stbsp__context *)user;
c->length += len;
if (len > c->count)
len = c->count;
if (len) {
if (buf != c->buf) {
const char *s, *se;
char *d;
d = c->buf;
s = buf;
se = buf + len;
do {
*d++ = *s++;
} while (s < se);
}
c->buf += len;
c->count -= len;
}
if (c->count <= 0)
return c->tmp;
return (c->count >= STB_SPRINTF_MIN) ? c->buf : c->tmp; // go direct into buffer if you can
}
static char * stbsp__count_clamp_callback( const char * buf, void * user, int len )
{
stbsp__context * c = (stbsp__context*)user;
(void) sizeof(buf);
c->length += len;
return c->tmp; // go direct into buffer if you can
}
STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va )
{
stbsp__context c;
if ( (count == 0) && !buf )
{
c.length = 0;
STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__count_clamp_callback, &c, c.tmp, fmt, va );
}
else
{
int l;
c.buf = buf;
c.count = count;
c.length = 0;
STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__clamp_callback, &c, stbsp__clamp_callback(0,&c,0), fmt, va );
// zero-terminate
l = (int)( c.buf - buf );
if ( l >= count ) // should never be greater, only equal (or less) than count
l = count - 1;
buf[l] = 0;
}
return c.length;
}
STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...)
{
int result;
va_list va;
va_start(va, fmt);
result = STB_SPRINTF_DECORATE(vsnprintf)(buf, count, fmt, va);
va_end(va);
return result;
}
STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va)
{
return STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
}
// =======================================================================
// low level float utility functions
#ifndef STB_SPRINTF_NOFLOAT
// copies d to bits w/ strict aliasing (this compiles to nothing on /Ox)
#define STBSP__COPYFP(dest, src) \
{ \
int cn; \
for (cn = 0; cn < 8; cn++) \
((char *)&dest)[cn] = ((char *)&src)[cn]; \
}
// get float info
static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value)
{
double d;
stbsp__int64 b = 0;
// load value and round at the frac_digits
d = value;
STBSP__COPYFP(b, d);
*bits = b & ((((stbsp__uint64)1) << 52) - 1);
*expo = (stbsp__int32)(((b >> 52) & 2047) - 1023);
return (stbsp__int32)((stbsp__uint64) b >> 63);
}
static double const stbsp__bot[23] = {
1e+000, 1e+001, 1e+002, 1e+003, 1e+004, 1e+005, 1e+006, 1e+007, 1e+008, 1e+009, 1e+010, 1e+011,
1e+012, 1e+013, 1e+014, 1e+015, 1e+016, 1e+017, 1e+018, 1e+019, 1e+020, 1e+021, 1e+022
};
static double const stbsp__negbot[22] = {
1e-001, 1e-002, 1e-003, 1e-004, 1e-005, 1e-006, 1e-007, 1e-008, 1e-009, 1e-010, 1e-011,
1e-012, 1e-013, 1e-014, 1e-015, 1e-016, 1e-017, 1e-018, 1e-019, 1e-020, 1e-021, 1e-022
};
static double const stbsp__negboterr[22] = {
-5.551115123125783e-018, -2.0816681711721684e-019, -2.0816681711721686e-020, -4.7921736023859299e-021, -8.1803053914031305e-022, 4.5251888174113741e-023,
4.5251888174113739e-024, -2.0922560830128471e-025, -6.2281591457779853e-026, -3.6432197315497743e-027, 6.0503030718060191e-028, 2.0113352370744385e-029,
-3.0373745563400371e-030, 1.1806906454401013e-032, -7.7705399876661076e-032, 2.0902213275965398e-033, -7.1542424054621921e-034, -7.1542424054621926e-035,
2.4754073164739869e-036, 5.4846728545790429e-037, 9.2462547772103625e-038, -4.8596774326570872e-039
};
static double const stbsp__top[13] = {
1e+023, 1e+046, 1e+069, 1e+092, 1e+115, 1e+138, 1e+161, 1e+184, 1e+207, 1e+230, 1e+253, 1e+276, 1e+299
};
static double const stbsp__negtop[13] = {
1e-023, 1e-046, 1e-069, 1e-092, 1e-115, 1e-138, 1e-161, 1e-184, 1e-207, 1e-230, 1e-253, 1e-276, 1e-299
};
static double const stbsp__toperr[13] = {
8388608,
6.8601809640529717e+028,
-7.253143638152921e+052,
-4.3377296974619174e+075,
-1.5559416129466825e+098,
-3.2841562489204913e+121,
-3.7745893248228135e+144,
-1.7356668416969134e+167,
-3.8893577551088374e+190,
-9.9566444326005119e+213,
6.3641293062232429e+236,
-5.2069140800249813e+259,
-5.2504760255204387e+282
};
static double const stbsp__negtoperr[13] = {
3.9565301985100693e-040, -2.299904345391321e-063, 3.6506201437945798e-086, 1.1875228833981544e-109,
-5.0644902316928607e-132, -6.7156837247865426e-155, -2.812077463003139e-178, -5.7778912386589953e-201,
7.4997100559334532e-224, -4.6439668915134491e-247, -6.3691100762962136e-270, -9.436808465446358e-293,
8.0970921678014997e-317
};
#if defined(_MSC_VER) && (_MSC_VER <= 1200)
static stbsp__uint64 const stbsp__powten[20] = {
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000,
100000000000,
1000000000000,
10000000000000,
100000000000000,
1000000000000000,
10000000000000000,
100000000000000000,
1000000000000000000,
10000000000000000000U
};
#define stbsp__tento19th ((stbsp__uint64)1000000000000000000)
#else
static stbsp__uint64 const stbsp__powten[20] = {
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
10000000000ULL,
100000000000ULL,
1000000000000ULL,
10000000000000ULL,
100000000000000ULL,
1000000000000000ULL,
10000000000000000ULL,
100000000000000000ULL,
1000000000000000000ULL,
10000000000000000000ULL
};
#define stbsp__tento19th (1000000000000000000ULL)
#endif
#define stbsp__ddmulthi(oh, ol, xh, yh) \
{ \
double ahi = 0, alo, bhi = 0, blo; \
stbsp__int64 bt; \
oh = xh * yh; \
STBSP__COPYFP(bt, xh); \
bt &= ((~(stbsp__uint64)0) << 27); \
STBSP__COPYFP(ahi, bt); \
alo = xh - ahi; \
STBSP__COPYFP(bt, yh); \
bt &= ((~(stbsp__uint64)0) << 27); \
STBSP__COPYFP(bhi, bt); \
blo = yh - bhi; \
ol = ((ahi * bhi - oh) + ahi * blo + alo * bhi) + alo * blo; \
}
#define stbsp__ddtoS64(ob, xh, xl) \
{ \
double ahi = 0, alo, vh, t; \
ob = (stbsp__int64)xh; \
vh = (double)ob; \
ahi = (xh - vh); \
t = (ahi - xh); \
alo = (xh - (ahi - t)) - (vh + t); \
ob += (stbsp__int64)(ahi + alo + xl); \
}
#define stbsp__ddrenorm(oh, ol) \
{ \
double s; \
s = oh + ol; \
ol = ol - (s - oh); \
oh = s; \
}
#define stbsp__ddmultlo(oh, ol, xh, xl, yh, yl) ol = ol + (xh * yl + xl * yh);
#define stbsp__ddmultlos(oh, ol, xh, yl) ol = ol + (xh * yl);
static void stbsp__raise_to_power10(double *ohi, double *olo, double d, stbsp__int32 power) // power can be -323 to +350
{
double ph, pl;
if ((power >= 0) && (power <= 22)) {
stbsp__ddmulthi(ph, pl, d, stbsp__bot[power]);
} else {
stbsp__int32 e, et, eb;
double p2h, p2l;
e = power;
if (power < 0)
e = -e;
et = (e * 0x2c9) >> 14; /* %23 */
if (et > 13)
et = 13;
eb = e - (et * 23);
ph = d;
pl = 0.0;
if (power < 0) {
if (eb) {
--eb;
stbsp__ddmulthi(ph, pl, d, stbsp__negbot[eb]);
stbsp__ddmultlos(ph, pl, d, stbsp__negboterr[eb]);
}
if (et) {
stbsp__ddrenorm(ph, pl);
--et;
stbsp__ddmulthi(p2h, p2l, ph, stbsp__negtop[et]);
stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__negtop[et], stbsp__negtoperr[et]);
ph = p2h;
pl = p2l;
}
} else {
if (eb) {
e = eb;
if (eb > 22)
eb = 22;
e -= eb;
stbsp__ddmulthi(ph, pl, d, stbsp__bot[eb]);
if (e) {
stbsp__ddrenorm(ph, pl);
stbsp__ddmulthi(p2h, p2l, ph, stbsp__bot[e]);
stbsp__ddmultlos(p2h, p2l, stbsp__bot[e], pl);
ph = p2h;
pl = p2l;
}
}
if (et) {
stbsp__ddrenorm(ph, pl);
--et;
stbsp__ddmulthi(p2h, p2l, ph, stbsp__top[et]);
stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__top[et], stbsp__toperr[et]);
ph = p2h;
pl = p2l;
}
}
}
stbsp__ddrenorm(ph, pl);
*ohi = ph;
*olo = pl;
}
// given a float value, returns the significant bits in bits, and the position of the
// decimal point in decimal_pos. +/-INF and NAN are specified by special values
// returned in the decimal_pos parameter.
// frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000
static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits)
{
double d;
stbsp__int64 bits = 0;
stbsp__int32 expo, e, ng, tens;
d = value;
STBSP__COPYFP(bits, d);
expo = (stbsp__int32)((bits >> 52) & 2047);
ng = (stbsp__int32)((stbsp__uint64) bits >> 63);
if (ng)
d = -d;
if (expo == 2047) // is nan or inf?
{
*start = (bits & ((((stbsp__uint64)1) << 52) - 1)) ? "NaN" : "Inf";
*decimal_pos = STBSP__SPECIAL;
*len = 3;
return ng;
}
if (expo == 0) // is zero or denormal
{
if (((stbsp__uint64) bits << 1) == 0) // do zero
{
*decimal_pos = 1;
*start = out;
out[0] = '0';
*len = 1;
return ng;
}
// find the right expo for denormals
{
stbsp__int64 v = ((stbsp__uint64)1) << 51;
while ((bits & v) == 0) {
--expo;
v >>= 1;
}
}
}
// find the decimal exponent as well as the decimal bits of the value
{
double ph, pl;
// log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046
tens = expo - 1023;
tens = (tens < 0) ? ((tens * 617) / 2048) : (((tens * 1233) / 4096) + 1);
// move the significant bits into position and stick them into an int
stbsp__raise_to_power10(&ph, &pl, d, 18 - tens);
// get full as much precision from double-double as possible
stbsp__ddtoS64(bits, ph, pl);
// check if we undershot
if (((stbsp__uint64)bits) >= stbsp__tento19th)
++tens;
}
// now do the rounding in integer land
frac_digits = (frac_digits & 0x80000000) ? ((frac_digits & 0x7ffffff) + 1) : (tens + frac_digits);
if ((frac_digits < 24)) {
stbsp__uint32 dg = 1;
if ((stbsp__uint64)bits >= stbsp__powten[9])
dg = 10;
while ((stbsp__uint64)bits >= stbsp__powten[dg]) {
++dg;
if (dg == 20)
goto noround;
}
if (frac_digits < dg) {
stbsp__uint64 r;
// add 0.5 at the right position and round
e = dg - frac_digits;
if ((stbsp__uint32)e >= 24)
goto noround;
r = stbsp__powten[e];
bits = bits + (r / 2);
if ((stbsp__uint64)bits >= stbsp__powten[dg])
++tens;
bits /= r;
}
noround:;
}
// kill long trailing runs of zeros
if (bits) {
stbsp__uint32 n;
for (;;) {
if (bits <= 0xffffffff)
break;
if (bits % 1000)
goto donez;
bits /= 1000;
}
n = (stbsp__uint32)bits;
while ((n % 1000) == 0)
n /= 1000;
bits = n;
donez:;
}
// convert to string
out += 64;
e = 0;
for (;;) {
stbsp__uint32 n;
char *o = out - 8;
// do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned)
if (bits >= 100000000) {
n = (stbsp__uint32)(bits % 100000000);
bits /= 100000000;
} else {
n = (stbsp__uint32)bits;
bits = 0;
}
while (n) {
out -= 2;
*(stbsp__uint16 *)out = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
n /= 100;
e += 2;
}
if (bits == 0) {
if ((e) && (out[0] == '0')) {
++out;
--e;
}
break;
}
while (out != o) {
*--out = '0';
++e;
}
}
*decimal_pos = tens;
*start = out;
*len = e;
return ng;
}
#undef stbsp__ddmulthi
#undef stbsp__ddrenorm
#undef stbsp__ddmultlo
#undef stbsp__ddmultlos
#undef STBSP__SPECIAL
#undef STBSP__COPYFP
#endif // STB_SPRINTF_NOFLOAT
// clean up
#undef stbsp__uint16
#undef stbsp__uint32
#undef stbsp__int32
#undef stbsp__uint64
#undef stbsp__int64
#undef STBSP__UNALIGNED
#endif // STB_SPRINTF_IMPLEMENTATION
/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/
#endif // DQN_STB_SPRINTF_HEADER_ONLY
#if defined(DQN_COMPILER_W32_MSVC) || defined(DQN_COMPILER_W32_CLANG)
#if !defined(DQN_CRT_SECURE_NO_WARNINGS_PREVIOUSLY_DEFINED)
#undef _CRT_SECURE_NO_WARNINGS
#endif
#endif