Put lane shuffle data into reusable function, prep for writing to 3bpp dest

This commit is contained in:
doyle 2020-07-09 22:41:44 +10:00
parent e952fa0b3b
commit 856ee2a627

View File

@ -109,6 +109,215 @@ RS_FILE_SCOPE void RaylibSIMD__SoftwareBlendPixel(unsigned char const *src_ptr,
*(RS_CAST(uint32_t *)dest_ptr) = blend_pixel;
}
typedef struct
{
__m128i shuffle;
uint8_t r_bit_mask;
uint8_t g_bit_mask;
uint8_t b_bit_mask;
uint8_t a_bit_mask;
uint8_t r_bit_shift;
uint8_t g_bit_shift;
uint8_t b_bit_shift;
uint8_t a_bit_shift;
float r_to_01_coefficient;
float b_to_01_coefficient;
float g_to_01_coefficient;
float a_to_01_coefficient;
} RaylibSIMD_PixelPerLaneShuffle;
static RaylibSIMD_PixelPerLaneShuffle RaylibSIMD__FormatToPixelPerLaneShuffle128Bit(int format)
{
RaylibSIMD_PixelPerLaneShuffle result = {0};
result.shuffle = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
result.r_bit_mask = 0xFF;
result.g_bit_mask = 0xFF;
result.b_bit_mask = 0xFF;
result.a_bit_mask = 0xFF;
result.r_bit_shift = 0;
result.g_bit_shift = 8;
result.b_bit_shift = 16;
result.a_bit_shift = 24;
result.r_to_01_coefficient = 1.f / 255.f;
result.g_to_01_coefficient = 1.f / 255.f;
result.b_to_01_coefficient = 1.f / 255.f;
result.a_to_01_coefficient = 1.f / 255.f;
switch(format)
{
default: break;
// NOTE: We load 4 pixels x 4 colors at a time. But if the
// source image is RGB, then the 4th color loaded in each
// pixel is going to be the RED component of the next pixel.
//
// Pixels[] = {RGB, RGB, RGB, RGB, ...}
//
// For example, naively loading the next pixels in a 3BPP
// byte stream, produces in a 128 bit SIMD register
//
// Pixel | 1 2 3 4 5 6*
// Register | {[RGBR] [GBRG] [BRGB] [RGBR]}
// ^
// |
// +---- This is the start of the 2nd pixel.
//
// * Note that only the red channel of the 6th pixel gets loaded.
//
// The 2nd pixel needs to be moved into the SIMD lane.
// and so forth for subsequent pixels. We shift the color
// channels to correctly set up the SIMD lane, like so.
//
// Pixel | 1 2 3 4
// Register | {[RGB.] [RGB.] [RGB.] [RGB.]]}
//
// We do this by shuffling the loaded bits into place
// duplicating the red channel and copying onwards. In the
// RGBA case, we do a no-op shuffle that preserves positions
// of all color components to avoid branches in the blitting
// hot path.
// NOTE: R8G8B8 24bit Pixel
// Bits | 23 22 21 20 19 18 17 16 | 15 14 13 12 11 10 9 8 | 7654 3210
// Color Bits | R R R R R R R R | G G G G G G G G | BBBB BBBB
//
// A 128bit SIMD register with 4x32bit lanes can store
// 1 pixel per register and the red channel of the next
// pixel.
//
// Pixel | 1 2 3 4 5 6
// Register | {[RGBR] [GBRG] [BRGB] [RGBR]}
//
// Desired layout 1 pixel per 32 bit lane
//
// Pixel | 1 2 3 4
// Register | {[RGB.] [RGB.] [RGB.] [RGB.]]}
// Bits | [0:23] [24:47] [48:71] [72:95]
// Bytes (Shuffle) | [0:2] [3:5] [6:8] [9:11]
case UNCOMPRESSED_R8G8B8:
{
result.shuffle = _mm_setr_epi8(0, 1, 2, 0, // Lane 1
3, 4, 5, 0,
6, 7, 8, 0,
9, 10, 11, 0);
}
break;
// NOTE: RGBA4444 16bit Pixel
// Bits | 15 14 13 12 | 11 10 98 | 7654 | 3210
// Color Bits | R R R R | G G GG | BBBB | AAAA
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
case UNCOMPRESSED_R4G4B4A4:
{
result.shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
result.r_bit_mask = 0b1111;
result.g_bit_mask = 0b1111;
result.b_bit_mask = 0b1111;
result.a_bit_mask = 0b1111;
result.r_bit_shift = 12;
result.g_bit_shift = 8;
result.b_bit_shift = 4;
result.a_bit_shift = 0;
result.r_to_01_coefficient = 1.f/15.f;
result.g_to_01_coefficient = 1.f/15.f;
result.b_to_01_coefficient = 1.f/15.f;
result.a_to_01_coefficient = 1.f/15.f;
}
break;
// NOTE: RGB565 16bit Pixel
// Bits | 15 14 13 12 11 | 10 98765 | 43210
// Color Bits | R R R R R | G GGGGG | BBBBB
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
case UNCOMPRESSED_R5G6B5:
{
result.shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
result.r_bit_mask = 0b011111;
result.g_bit_mask = 0b111111;
result.b_bit_mask = 0b011111;
result.r_bit_shift = 11;
result.g_bit_shift = 5;
result.b_bit_shift = 0;
result.r_to_01_coefficient = 1.f/31.f;
result.g_to_01_coefficient = 1.f/63.f;
result.b_to_01_coefficient = 1.f/31.f;
}
break;
// NOTE: RGBA5551 16bit Pixel
// Bits | 15 14 13 12 11 | 10 9876 | 54321 | 0
// Color Bits | R R R R R | G GGGG | BBBBB | A
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
case UNCOMPRESSED_R5G5B5A1:
{
result.shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
result.r_bit_mask = 0b11111;
result.g_bit_mask = 0b11111;
result.b_bit_mask = 0b11111;
result.a_bit_mask = 0b00001;
result.r_bit_shift = 11;
result.g_bit_shift = 6;
result.b_bit_shift = 1;
result.a_bit_shift = 0;
result.r_to_01_coefficient = 1.f/31.f;
result.g_to_01_coefficient = 1.f/31.f;
result.b_to_01_coefficient = 1.f/31.f;
result.a_to_01_coefficient = 1.f;
}
break;
}
return result;
}
typedef enum
{
RaylibSIMD_ImageDrawMode_Original,
@ -295,7 +504,6 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
// because the required blend equation is the same across the
// same color components.
__m128 const inv_255_4x = _mm_set1_ps(INV_255);
__m128 const tint_r01_4x = _mm_set1_ps(tint.r * INV_255);
__m128 const tint_g01_4x = _mm_set1_ps(tint.g * INV_255);
__m128 const tint_b01_4x = _mm_set1_ps(tint.b * INV_255);
@ -304,200 +512,40 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
__m128 const u255_4x = _mm_set1_ps(255.f);
__m128i const hex_0xFF_4x = _mm_set1_epi32(0xFF);
float src_alpha_min = 0.f;
__m128i src_pixels_shuffle = _mm_set_epi8(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); // No-op shuffle.
float src_alpha_min = 0.f;
if (srcPtr->format == UNCOMPRESSED_R8G8B8) src_alpha_min = 255.f;
else if (srcPtr->format == UNCOMPRESSED_R5G6B5) src_alpha_min = 255.f;
int r_bit_shift = 0;
int g_bit_shift = 8;
int b_bit_shift = 16;
int a_bit_shift = 24;
RaylibSIMD_PixelPerLaneShuffle src_lanes = RaylibSIMD__FormatToPixelPerLaneShuffle128Bit(srcPtr->format);
RaylibSIMD_PixelPerLaneShuffle dest_lanes = RaylibSIMD__FormatToPixelPerLaneShuffle128Bit(dst->format);
__m128i r_mask_4x = _mm_set1_epi32(0xFF);
__m128i g_mask_4x = _mm_set1_epi32(0xFF);
__m128i b_mask_4x = _mm_set1_epi32(0xFF);
__m128i a_mask_4x = _mm_set1_epi32(0xFF);
__m128 const src_alpha_min_4x = _mm_set1_ps(src_alpha_min);
__m128 src_r_to_01_space_coefficient = _mm_set1_ps(INV_255);
__m128 src_g_to_01_space_coefficient = _mm_set1_ps(INV_255);
__m128 src_b_to_01_space_coefficient = _mm_set1_ps(INV_255);
__m128 src_a_to_01_space_coefficient = _mm_set1_ps(INV_255);
__m128i src_r_bit_mask = _mm_set1_epi32(src_lanes.r_bit_mask);
__m128i src_g_bit_mask = _mm_set1_epi32(src_lanes.g_bit_mask);
__m128i src_b_bit_mask = _mm_set1_epi32(src_lanes.b_bit_mask);
__m128i src_a_bit_mask = _mm_set1_epi32(src_lanes.a_bit_mask);
if (srcPtr->format == UNCOMPRESSED_R8G8B8)
{
// NOTE: We load 4 pixels x 4 colors at a time. But if the
// source image is RGB, then the 4th color loaded in each
// pixel is going to be the RED component of the next pixel.
//
// Pixels[] = {RGB, RGB, RGB, RGB, ...}
//
// For example, naively loading the next pixels in a 3BPP
// byte stream, produces in a 128 bit SIMD register
//
// Pixel | 1 2 3 4 5 6*
// Register | {[RGBR] [GBRG] [BRGB] [RGBR]}
// ^
// |
// +---- This is the start of the 2nd pixel.
//
// * Note that only the red channel of the 6th pixel gets loaded.
//
// The 2nd pixel needs to be moved into the SIMD lane.
// and so forth for subsequent pixels. We shift the color
// channels to correctly set up the SIMD lane, like so.
//
// Pixel | 1 2 3 4
// Register | {[RGB.] [RGB.] [RGB.] [RGB.]]}
//
// We do this by shuffling the loaded bits into place
// duplicating the red channel and copying onwards. In the
// RGBA case, we do a no-op shuffle that preserves positions
// of all color components to avoid branches in the blitting
// hot path.
__m128 src_r_to_01_coefficient = _mm_set1_ps(src_lanes.r_to_01_coefficient);
__m128 src_g_to_01_coefficient = _mm_set1_ps(src_lanes.g_to_01_coefficient);
__m128 src_b_to_01_coefficient = _mm_set1_ps(src_lanes.b_to_01_coefficient);
__m128 src_a_to_01_coefficient = _mm_set1_ps(src_lanes.a_to_01_coefficient);
// NOTE: R8G8B8 24bit Pixel
// Bits | 23 22 21 20 19 18 17 16 | 15 14 13 12 11 10 9 8 | 7654 3210
// Color Bits | R R R R R R R R | G G G G G G G G | BBBB BBBB
//
// A 128bit SIMD register with 4x32bit lanes can store
// 1 pixel per register and the red channel of the next
// pixel.
//
// Pixel | 1 2 3 4 5 6
// Register | {[RGBR] [GBRG] [BRGB] [RGBR]}
//
// Desired layout 1 pixel per 32 bit lane
//
// Pixel | 1 2 3 4
// Register | {[RGB.] [RGB.] [RGB.] [RGB.]]}
// Bits | [0:23] [24:47] [48:71] [72:95]
// Bytes (Shuffle) | [0:2] [3:5] [6:8] [9:11]
__m128i dest_r_bit_mask = _mm_set1_epi32(dest_lanes.r_bit_mask);
__m128i dest_g_bit_mask = _mm_set1_epi32(dest_lanes.g_bit_mask);
__m128i dest_b_bit_mask = _mm_set1_epi32(dest_lanes.b_bit_mask);
__m128i dest_a_bit_mask = _mm_set1_epi32(dest_lanes.a_bit_mask);
src_alpha_min = 255.f;
src_pixels_shuffle = _mm_setr_epi8(0, 1, 2, 0, // Lane 1
3, 4, 5, 0,
6, 7, 8, 0,
9, 10, 11, 0);
}
else if (srcPtr->format == UNCOMPRESSED_R5G6B5)
{
// NOTE: RGB565 16bit Pixel
// Bits | 15 14 13 12 11 | 10 98765 | 43210
// Color Bits | R R R R R | G GGGGG | BBBBB
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
r_bit_shift = 11;
g_bit_shift = 5;
b_bit_shift = 0;
r_mask_4x = _mm_set1_epi32(0b011111);
g_mask_4x = _mm_set1_epi32(0b111111);
b_mask_4x = _mm_set1_epi32(0b011111);
src_alpha_min = 255.f;
src_pixels_shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
src_r_to_01_space_coefficient = _mm_set1_ps(1.f/31.f);
src_g_to_01_space_coefficient = _mm_set1_ps(1.f/63.f);
src_b_to_01_space_coefficient = _mm_set1_ps(1.f/31.f);
}
else if (srcPtr->format == UNCOMPRESSED_R5G5B5A1)
{
// NOTE: RGBA5551 16bit Pixel
// Bits | 15 14 13 12 11 | 10 9876 | 54321 | 0
// Color Bits | R R R R R | G GGGG | BBBBB | A
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
r_bit_shift = 11;
g_bit_shift = 6;
b_bit_shift = 1;
a_bit_shift = 0;
r_mask_4x = _mm_set1_epi32(0b11111);
g_mask_4x = _mm_set1_epi32(0b11111);
b_mask_4x = _mm_set1_epi32(0b11111);
a_mask_4x = _mm_set1_epi32(0b00001);
src_pixels_shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
src_r_to_01_space_coefficient = _mm_set1_ps(1.f/31.f);
src_g_to_01_space_coefficient = _mm_set1_ps(1.f/31.f);
src_b_to_01_space_coefficient = _mm_set1_ps(1.f/31.f);
src_a_to_01_space_coefficient = _mm_set1_ps(1.f);
}
else if (srcPtr->format == UNCOMPRESSED_R4G4B4A4)
{
// NOTE: RGBA4444 16bit Pixel
// Bits | 15 14 13 12 | 11 10 98 | 7654 | 3210
// Color Bits | R R R R | G G GG | BBBB | AAAA
//
// A 128bit SIMD register with 4x32bit lanes can store
// 2 pixels per register.
//
// Register | {[P1, P2] [P3, P4] [P5, P6] [P7, P8]}
//
// See UNCOMPRESSED_R8G8B8 for reason for shuffle.
// Desired layout 1 pixel per 32 bit lane
//
// Register | {[P1] [P2] [P3] [P4]}
// Bits | [0:15] [16:31] [32:46] [46:61]
// Bytes (Shuffle) | [0:1] [2:3] [4:5] [6:7]
r_bit_shift = 12;
g_bit_shift = 8;
b_bit_shift = 4;
a_bit_shift = 0;
r_mask_4x = _mm_set1_epi32(0b1111);
g_mask_4x = _mm_set1_epi32(0b1111);
b_mask_4x = _mm_set1_epi32(0b1111);
a_mask_4x = _mm_set1_epi32(0b1111);
src_pixels_shuffle = _mm_setr_epi8(0, 1, 0, 1, // Lane 1
2, 3, 2, 3,
4, 5, 4, 5,
6, 7, 6, 7);
src_r_to_01_space_coefficient = _mm_set1_ps(1.f/15.f);
src_g_to_01_space_coefficient = _mm_set1_ps(1.f/15.f);
src_b_to_01_space_coefficient = _mm_set1_ps(1.f/15.f);
src_a_to_01_space_coefficient = _mm_set1_ps(1.f/15.f);
}
__m128 const src_alpha_min_4x = _mm_set1_ps(src_alpha_min);
__m128 dest_r_to_01_coefficient = _mm_set1_ps(dest_lanes.r_to_01_coefficient);
__m128 dest_g_to_01_coefficient = _mm_set1_ps(dest_lanes.g_to_01_coefficient);
__m128 dest_b_to_01_coefficient = _mm_set1_ps(dest_lanes.b_to_01_coefficient);
__m128 dest_a_to_01_coefficient = _mm_set1_ps(dest_lanes.a_to_01_coefficient);
// NOTE: Divide by float because we blend in [0,1] 32 bit float space
// Each color component requires 1 SIMD lane to perform such blend.
int const PIXELS_PER_SIMD_WRITE = sizeof(__m128) / sizeof(float);
int const src_bits_per_pixel = RaylibSIMD__FormatToBitsPerPixel(srcPtr->format);
int const src_bytes_per_pixel = src_bits_per_pixel / 8;
int const PIXELS_PER_SIMD_WRITE = sizeof(__m128) / sizeof(float);
int const src_bits_per_pixel = RaylibSIMD__FormatToBitsPerPixel(srcPtr->format);
int const src_bytes_per_pixel = src_bits_per_pixel / 8;
int const src_bytes_per_simd_write = PIXELS_PER_SIMD_WRITE * src_bytes_per_pixel;
int const dest_bytes_per_simd_write = PIXELS_PER_SIMD_WRITE * bytesPerPixelDst;
@ -517,9 +565,12 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
unsigned char *dest = dest_ptr;
// NOTE: Extract Pixels From Buffer
__m128i src_pixels_4x = _mm_loadu_si128((__m128i *)src_ptr);
__m128i dest_pixels_4x = _mm_loadu_si128((__m128i *)dest_ptr);
__m128i src_pixels_4x_shuffled = _mm_shuffle_epi8(src_pixels_4x, src_pixels_shuffle);
__m128i src_pixels_4x = _mm_loadu_si128((__m128i *)src_ptr);
__m128i dest_pixels_4x = _mm_loadu_si128((__m128i *)dest_ptr);
// NOTE: Arrange loaded pixels to 1 pixel per lane.
__m128i src_pixels_4x_shuffled = _mm_shuffle_epi8(src_pixels_4x, src_lanes.shuffle);
__m128i dest_pixels_4x_shuffled = _mm_shuffle_epi8(dest_pixels_4x, dest_lanes.shuffle);
// NOTE: Advance Pixel Buffer
src_ptr += src_bytes_per_simd_write;
@ -532,15 +583,15 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
// 1. Shift colour component to lowest 8 bits
// 2. Isolate the color component
//
__m128i src0123_r_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, r_bit_shift), r_mask_4x);
__m128i src0123_g_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, g_bit_shift), g_mask_4x);
__m128i src0123_b_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, b_bit_shift), b_mask_4x);
__m128i src0123_a_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, a_bit_shift), a_mask_4x);
__m128i src0123_r_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, src_lanes.r_bit_shift), src_r_bit_mask);
__m128i src0123_g_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, src_lanes.g_bit_shift), src_g_bit_mask);
__m128i src0123_b_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, src_lanes.b_bit_shift), src_b_bit_mask);
__m128i src0123_a_int = _mm_and_si128(_mm_srli_epi32(src_pixels_4x_shuffled, src_lanes.a_bit_shift), src_a_bit_mask);
__m128i dest0123_r_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x, 0), hex_0xFF_4x);
__m128i dest0123_g_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x, 8), hex_0xFF_4x);
__m128i dest0123_b_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x, 16), hex_0xFF_4x);
__m128i dest0123_a_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x, 24), hex_0xFF_4x);
__m128i dest0123_r_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x_shuffled, dest_lanes.r_bit_shift), dest_r_bit_mask);
__m128i dest0123_g_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x_shuffled, dest_lanes.g_bit_shift), dest_g_bit_mask);
__m128i dest0123_b_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x_shuffled, dest_lanes.b_bit_shift), dest_b_bit_mask);
__m128i dest0123_a_int = _mm_and_si128(_mm_srli_epi32(dest_pixels_4x_shuffled, dest_lanes.a_bit_shift), dest_a_bit_mask);
// NOTE: Convert to SIMD f32x4
__m128 src0123_r = _mm_cvtepi32_ps(src0123_r_int);
@ -558,10 +609,10 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
__m128 dest0123_a = _mm_cvtepi32_ps(dest0123_a_int);
// NOTE: Source Pixels to Normalized [0, 1] Float Space
__m128 src0123_r01 = _mm_mul_ps(src0123_r, src_r_to_01_space_coefficient);
__m128 src0123_g01 = _mm_mul_ps(src0123_g, src_g_to_01_space_coefficient);
__m128 src0123_b01 = _mm_mul_ps(src0123_b, src_b_to_01_space_coefficient);
__m128 src0123_a01 = _mm_mul_ps(src0123_a, src_a_to_01_space_coefficient);
__m128 src0123_r01 = _mm_mul_ps(src0123_r, src_r_to_01_coefficient);
__m128 src0123_g01 = _mm_mul_ps(src0123_g, src_g_to_01_coefficient);
__m128 src0123_b01 = _mm_mul_ps(src0123_b, src_b_to_01_coefficient);
__m128 src0123_a01 = _mm_mul_ps(src0123_a, src_a_to_01_coefficient);
// NOTE: Tint Source Pixels
__m128 src0123_tinted_r01 = _mm_mul_ps(src0123_r01, tint_r01_4x);
@ -570,10 +621,10 @@ void RaylibSIMD_ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dst
__m128 src0123_tinted_a01 = _mm_mul_ps(src0123_a01, tint_a01_4x);
// NOTE: Dest Pixels to Normalized [0, 1] Float Space
__m128 dest0123_r01 = _mm_mul_ps(dest0123_r, inv_255_4x);
__m128 dest0123_g01 = _mm_mul_ps(dest0123_g, inv_255_4x);
__m128 dest0123_b01 = _mm_mul_ps(dest0123_b, inv_255_4x);
__m128 dest0123_a01 = _mm_mul_ps(dest0123_a, inv_255_4x);
__m128 dest0123_r01 = _mm_mul_ps(dest0123_r, dest_r_to_01_coefficient);
__m128 dest0123_g01 = _mm_mul_ps(dest0123_g, dest_g_to_01_coefficient);
__m128 dest0123_b01 = _mm_mul_ps(dest0123_b, dest_b_to_01_coefficient);
__m128 dest0123_a01 = _mm_mul_ps(dest0123_a, dest_a_to_01_coefficient);
// NOTE: Porter Duff Blend
// NOTE: Blend Alpha
@ -724,7 +775,8 @@ void RaylibSIMD_ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color)
unsigned char gray = RS_CAST(unsigned char)((r01 * 0.299f + g01 * 0.587f + b01 * 0.114f) * 255.0f);
color_4x = _mm_set1_epi8(gray);
} break;
}
break;
case UNCOMPRESSED_GRAY_ALPHA:
{
@ -740,8 +792,8 @@ void RaylibSIMD_ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color)
gray, color.a,
gray, color.a,
gray, color.a);
} break;
}
break;
case UNCOMPRESSED_R8G8B8A8:
{