Dqn/Code/Dqn_UnitTests.cpp
2020-04-01 01:08:59 +11:00

852 lines
41 KiB
C++

#define DQN_USE_PRIMITIVE_TYPEDEFS
#define DQN_IMPLEMENTATION
#include "Dqn.h"
struct TestState
{
int indent_level;
Dqn_String name;
Dqn_String fail_expr;
Dqn_String fail_msg;
bool scope_started;
};
struct TestingState
{
int num_tests_in_group;
int num_tests_ok_in_group;
TestState test;
Dqn_MemArena arena_;
Dqn_Allocator allocator;
};
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_GREEN "\x1b[32m"
#define ANSI_COLOR_YELLOW "\x1b[33m"
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define TEST_START_SCOPE(testing_state, test_name) \
DQN_DEFER \
{ \
if (testing_state.test.fail_expr.len == 0) testing_state.num_tests_ok_in_group++; \
TestState_PrintResult(&testing_state.test); \
Dqn_MemArena_ResetUsage(&testing_state.arena_, Dqn_ZeroMem::No); \
testing_state.allocator = Dqn_Allocator_Arena(&testing_state.arena_); \
testing_state.test = {}; \
}; \
testing_state.test.name = Dqn_Asprintf(&testing_state.allocator, test_name); \
testing_state.test.scope_started = true; \
testing_state.num_tests_in_group++
#define TEST_DECLARE_GROUP_SCOPED(testing_state, name) \
fprintf(stdout, "\n" name "\n"); \
DQN_DEFER \
{ \
TestingState_PrintGroupResult(&testing_state); \
testing_state = {}; \
}
#define TEST_EXPECT_MSG(testing_state, expr, msg, ...) \
DQN_ASSERT(testing_state.test.scope_started); \
if (!(expr)) \
{ \
testing_state.test.fail_expr = Dqn_Asprintf(&testing_state.allocator, #expr); \
testing_state.test.fail_msg = Dqn_Asprintf(&testing_state.allocator, msg, ##__VA_ARGS__); \
}
#define TEST_EXPECT(testing_state, expr) TEST_EXPECT_MSG(testing_state, expr, "")
void TestingState_PrintGroupResult(TestingState const *result)
{
char constexpr INDENT[] = " ";
int constexpr DESIRED_LEN = 72;
char const STATUS_OK[] = "OK";
char const STATUS_FAIL[] = "FAIL";
bool all_tests_passed = (result->num_tests_ok_in_group == result->num_tests_in_group);
char buf[256] = {};
int len = snprintf(buf, Dqn_ArrayCount(buf), "%02d/%02d Tests Passed ", result->num_tests_ok_in_group, result->num_tests_in_group);
isize remaining_len = DESIRED_LEN - len - 1;
remaining_len = (all_tests_passed) ? remaining_len - Dqn_CharCount(STATUS_OK) : remaining_len - Dqn_CharCount(STATUS_FAIL);
remaining_len = DQN_MAX(remaining_len, 0);
DQN_FOR_EACH(i, remaining_len) fprintf(stdout, " ");
fprintf(stdout, "%s", buf);
if (result->num_tests_ok_in_group == result->num_tests_in_group)
fprintf(stdout, ANSI_COLOR_GREEN "%s" ANSI_COLOR_RESET, STATUS_OK);
else
fprintf(stdout, ANSI_COLOR_RED "%s" ANSI_COLOR_RESET, STATUS_FAIL);
}
void TestState_PrintResult(TestState const *result)
{
char constexpr INDENT[] = " ";
int constexpr DESIRED_LEN = 72;
fprintf(stdout, "%s%s", INDENT, result->name.str);
char const STATUS_OK[] = "OK";
char const STATUS_FAIL[] = "FAIL";
isize remaining_len = DESIRED_LEN - result->name.len - Dqn_CharCount(INDENT);
remaining_len = (result->fail_expr.str) ? remaining_len - Dqn_CharCount(STATUS_FAIL) : remaining_len - Dqn_CharCount(STATUS_OK);
remaining_len = DQN_MAX(remaining_len, 0);
DQN_FOR_EACH(i, remaining_len) fprintf(stdout, ".");
if (result->fail_expr.str)
{
fprintf(stdout, ANSI_COLOR_RED "%s" ANSI_COLOR_RESET "\n", STATUS_FAIL);
fprintf(stdout, "%s%sReason: [%s] %s\n", INDENT, INDENT, result->fail_expr.str, result->fail_msg.str);
}
else
{
fprintf(stdout, ANSI_COLOR_GREEN "%s" ANSI_COLOR_RESET "\n", STATUS_OK);
}
}
FILE_SCOPE void UnitTests()
{
TestingState testing_state = {};
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Allocator
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Allocator");
// NOTE: Various allocator test
{
{
TEST_START_SCOPE(testing_state, "HeapAllocator - Allocate Small");
Dqn_Allocator allocator = Dqn_Allocator_Heap();
char constexpr EXPECT[] = "hello_world";
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char));
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT));
TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT);
}
{
TEST_START_SCOPE(testing_state, "XHeapAllocator - Allocate Small");
Dqn_Allocator allocator = Dqn_Allocator_XHeap();
char constexpr EXPECT[] = "hello_world";
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char));
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT));
TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT);
}
{
TEST_START_SCOPE(testing_state, "ArenaAllocator - Allocate Small");
Dqn_MemArena arena = {};
Dqn_Allocator allocator = Dqn_Allocator_Arena(&arena);
char constexpr EXPECT[] = "hello_world";
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char));
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT));
TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT);
}
}
// NOTE: Alignment Test
{
Dqn_u8 const ALIGNMENT3 = 3;
Dqn_u8 const NUM_BYTES = sizeof(Dqn_u32);
{
TEST_START_SCOPE(testing_state, "HeapAllocator - Align to 3 bytes");
Dqn_Allocator allocator = Dqn_Allocator_Heap();
auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment);
}
{
TEST_START_SCOPE(testing_state, "XHeapAllocator - Align to 3 bytes");
Dqn_Allocator allocator = Dqn_Allocator_XHeap();
auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment);
}
{
TEST_START_SCOPE(testing_state, "ArenaAllocator - Align to 3 bytes");
Dqn_MemArena arena = {};
Dqn_Allocator allocator = Dqn_Allocator_Arena(&arena);
auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment);
}
}
// NOTE: Dqn_AllocateMetadata tests
{
Dqn_u8 const ALIGNMENT3 = 3;
Dqn_u8 const NUM_BYTES = 4;
Dqn_u8 const MAX_OFFSET = (ALIGNMENT3 - 1) + sizeof(Dqn_AllocateMetadata);
{
TEST_START_SCOPE(testing_state, "HeapAllocator - Allocation metadata initialised");
Dqn_Allocator allocator = Dqn_Allocator_Heap();
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
Dqn_AllocateMetadata metadata = Dqn_AllocateMetadata_Get(buf);
TEST_EXPECT_MSG(testing_state, metadata.alignment == ALIGNMENT3, "metadata.alignment: %u, ALIGNMENT3: %u", metadata.alignment, ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, metadata.offset <= MAX_OFFSET, "metadata.offset: %u, MAX_OFFSET: %u", metadata.offset, MAX_OFFSET);
}
{
TEST_START_SCOPE(testing_state, "XHeapAllocator - Allocation metadata initialised");
Dqn_Allocator allocator = Dqn_Allocator_XHeap();
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
Dqn_AllocateMetadata metadata = Dqn_AllocateMetadata_Get(buf);
TEST_EXPECT_MSG(testing_state, metadata.alignment == ALIGNMENT3, "metadata.alignment: %u, ALIGNMENT3: %u", metadata.alignment, ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, metadata.offset <= MAX_OFFSET, "metadata.offset: %u, MAX_OFFSET: %u", metadata.offset, MAX_OFFSET);
}
{
TEST_START_SCOPE(testing_state, "ArenaAllocator - Allocation metadata initialised");
Dqn_MemArena arena = {};
Dqn_Allocator allocator = Dqn_Allocator_Arena(&arena);
char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3);
DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); };
Dqn_AllocateMetadata metadata = Dqn_AllocateMetadata_Get(buf);
TEST_EXPECT_MSG(testing_state, metadata.alignment == ALIGNMENT3, "metadata.alignment: %u, ALIGNMENT3: %u", metadata.alignment, ALIGNMENT3);
TEST_EXPECT_MSG(testing_state, metadata.offset <= MAX_OFFSET, "metadata.offset: %u, MAX_OFFSET: %u", metadata.offset, MAX_OFFSET);
}
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Array
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Array");
// NOTE: Dqn_Array_InitWithMemory
{
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test add single item and can't allocate more");
int memory[4] = {};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
Dqn_Array_Add(&array, 1);
Dqn_Array_Add(&array, 2);
Dqn_Array_Add(&array, 3);
Dqn_Array_Add(&array, 4);
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data %d", array.data[1]);
TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]);
TEST_EXPECT_MSG(testing_state, array.data[3] == 4, "array.data %d", array.data[3]);
TEST_EXPECT_MSG(testing_state, array.len == 4, "array.len: %d", array.len);
int *added_item = Dqn_Array_Add(&array, 5);
TEST_EXPECT(testing_state, added_item == nullptr);
TEST_EXPECT_MSG(testing_state, array.len == 4, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
}
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test add array of items");
int memory[4] = {};
int DATA[] = {1, 2, 3};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
Dqn_Array_Add(&array, DATA, Dqn_ArrayCount(DATA));
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data %d", array.data[1]);
TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]);
TEST_EXPECT_MSG(testing_state, array.len == 3, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
}
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test clear and clear with memory zeroed");
int memory[4] = {};
int DATA[] = {1, 2, 3};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
Dqn_Array_Add(&array, DATA, Dqn_ArrayCount(DATA));
Dqn_Array_Clear(&array, false /*zero_mem*/);
TEST_EXPECT_MSG(testing_state, array.len == 0, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d. Clear but don't zero memory so old values should still remain", array.data[0]);
Dqn_Array_Clear(&array, true /*zero_mem*/);
TEST_EXPECT_MSG(testing_state, array.data[0] == 0, "array.data %d. Clear but zero memory old values should not remain", array.data[0]);
}
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test erase stable and erase unstable");
int memory[4] = {};
int DATA[] = {1, 2, 3, 4};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
Dqn_Array_Add(&array, DATA, Dqn_ArrayCount(DATA));
Dqn_Array_EraseUnstable(&array, 1);
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.data[1] == 4, "array.data %d", array.data[1]);
TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]);
TEST_EXPECT_MSG(testing_state, array.len == 3, "array.len: %d", array.len);
Dqn_Array_EraseStable(&array, 0);
TEST_EXPECT_MSG(testing_state, array.data[0] == 4, "array.data: %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.data[1] == 3, "array.data: %d", array.data[1]);
TEST_EXPECT_MSG(testing_state, array.len == 2, "array.len: %d", array.len);
}
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test array pop and peek");
int memory[4] = {};
int DATA[] = {1, 2, 3};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
Dqn_Array_Add(&array, DATA, Dqn_ArrayCount(DATA));
Dqn_Array_Pop(&array, 2);
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data: %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.len == 1, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
int *peek_item = Dqn_Array_Peek(&array);
TEST_EXPECT_MSG(testing_state, *peek_item == 1, "peek: %d", *peek_item);
TEST_EXPECT_MSG(testing_state, array.len == 1, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
}
{
TEST_START_SCOPE(testing_state, "Fixed Memory: Test free on fixed memory array does nothing");
int memory[4] = {};
Dqn_Array<int> array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*len*/);
DQN_DEFER { Dqn_Array_Free(&array); };
}
}
// NOTE: Dynamic Memory: Dqn_Array
{
{
TEST_START_SCOPE(testing_state, "Dynamic Memory: Test reserve and over commit reallocates");
Dqn_Array<int> array = {};
DQN_DEFER { Dqn_Array_Free(&array); };
Dqn_Array_Reserve(&array, 4);
TEST_EXPECT_MSG(testing_state, array.len == 0, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max);
int DATA[] = {1, 2, 3, 4};
Dqn_Array_Add(&array, DATA, Dqn_ArrayCount(DATA));
TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data: %d", array.data[0]);
TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data: %d", array.data[1]);
TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data: %d", array.data[2]);
TEST_EXPECT_MSG(testing_state, array.data[3] == 4, "array.data: %d", array.data[3]);
TEST_EXPECT_MSG(testing_state, array.len == 4, "array.len: %d", array.len);
int *added_item = Dqn_Array_Add(&array, 5);
TEST_EXPECT_MSG(testing_state, *added_item == 5, "added_item: %d", *added_item);
TEST_EXPECT_MSG(testing_state, array.data[4] == 5, "array.data: %d", array.data[4]);
TEST_EXPECT_MSG(testing_state, array.len == 5, "array.len: %d", array.len);
TEST_EXPECT_MSG(testing_state, array.max >= 5, "array.max: %d", array.max);
}
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Rect
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Rect");
// NOTE: Dqn_Rect_Intersection
{
{
TEST_START_SCOPE(testing_state, "No intersection");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(0, 0), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(200, 0), Dqn_V2(200, 200));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 0 && ab.max.y == 0,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "A's min intersects B");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(50, 50), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 50 && ab.min.y == 50 && ab.max.x == 100 && ab.max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "B's min intersects A");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(50, 50), Dqn_V2(100, 100));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 50 && ab.min.y == 50 && ab.max.x == 100 && ab.max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "A's max intersects B");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(-50, -50), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 50 && ab.max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "B's max intersects A");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(-50, -50), Dqn_V2(100, 100));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 50 && ab.max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "B contains A");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(25, 25), Dqn_V2( 25, 25));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 25 && ab.min.y == 25 && ab.max.x == 50 && ab.max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "A contains B");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100));
Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(25, 25), Dqn_V2( 25, 25));
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 25 && ab.min.y == 25 && ab.max.x == 50 && ab.max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
{
TEST_START_SCOPE(testing_state, "A equals B");
Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(0, 0), Dqn_V2(100, 100));
Dqn_Rect b = a;
Dqn_Rect ab = Dqn_Rect_Intersection(a, b);
TEST_EXPECT_MSG(testing_state,
ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 100 && ab.max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.min.x,
ab.min.y,
ab.max.x,
ab.max.y);
}
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_StringBuilder
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_StringBuilder");
Dqn_Allocator allocator = Dqn_Allocator_Heap();
// NOTE: Dqn_StringBuilder_Append
{
{
TEST_START_SCOPE(testing_state, "Append variable length strings and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_Append(&builder, "Abc", 1);
Dqn_StringBuilder_Append(&builder, "cd");
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "Acd";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
{
TEST_START_SCOPE(testing_state, "Append empty string and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_Append(&builder, "");
Dqn_StringBuilder_Append(&builder, "");
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
{
TEST_START_SCOPE(testing_state, "Append empty string onto string and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_Append(&builder, "Acd");
Dqn_StringBuilder_Append(&builder, "");
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "Acd";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
{
TEST_START_SCOPE(testing_state, "Append nullptr and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_Append(&builder, nullptr, 5);
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
{
TEST_START_SCOPE(testing_state, "Append and require new linked buffer and build using heap allocator");
Dqn_StringBuilder<2> builder = {};
Dqn_StringBuilder_Append(&builder, "A");
Dqn_StringBuilder_Append(&builder, "z"); // Should force a new memory block
Dqn_StringBuilder_Append(&builder, "tec");
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "Aztec";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
}
// NOTE: Dqn_StringBuilder_AppendChar
{
TEST_START_SCOPE(testing_state, "Append char and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_AppendChar(&builder, 'a');
Dqn_StringBuilder_AppendChar(&builder, 'b');
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "ab";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
// NOTE: Dqn_StringBuilder_FmtAppend
{
{
TEST_START_SCOPE(testing_state, "Append format string and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_FmtAppend(&builder, "Number: %d, String: %s, ", 4, "Hello Sailor");
Dqn_StringBuilder_FmtAppend(&builder, "Extra Stuff");
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "Number: 4, String: Hello Sailor, Extra Stuff";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
{
TEST_START_SCOPE(testing_state, "Append nullptr format string and build using heap allocator");
Dqn_StringBuilder<> builder = {};
Dqn_StringBuilder_FmtAppend(&builder, nullptr);
isize len = 0;
char *result = Dqn_StringBuilder_Build(&builder, &allocator, &len);
DQN_DEFER { Dqn_Allocator_Free(&allocator, result); };
char constexpr EXPECT_STR[] = "";
TEST_EXPECT_MSG(testing_state, len == Dqn_CharCountI(EXPECT_STR), "len: %zd", len);
TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, len) == 0, "result: %s", result);
}
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_FixedArray
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_FixedArray");
// NOTE: Dqn_FixedArray_Init
{
TEST_START_SCOPE(testing_state, "Initialise from raw array");
int raw_array[] = {1, 2};
auto array = Dqn_FixedArray_Init<int, 4>(raw_array, (int)Dqn_ArrayCount(raw_array));
TEST_EXPECT(testing_state, array.len == 2);
TEST_EXPECT(testing_state, array[0] == 1);
TEST_EXPECT(testing_state, array[1] == 2);
}
// NOTE: Dqn_FixedArray_EraseStable
{
TEST_START_SCOPE(testing_state, "Erase stable 1 element from array");
int raw_array[] = {1, 2, 3};
auto array = Dqn_FixedArray_Init<int, 4>(raw_array, (int)Dqn_ArrayCount(raw_array));
Dqn_FixedArray_EraseStable(&array, 1);
TEST_EXPECT(testing_state, array.len == 2);
TEST_EXPECT(testing_state, array[0] == 1);
TEST_EXPECT(testing_state, array[1] == 3);
}
// NOTE: Dqn_FixedArray_EraseUnstable
{
TEST_START_SCOPE(testing_state, "Erase unstable 1 element from array");
int raw_array[] = {1, 2, 3};
auto array = Dqn_FixedArray_Init<int, 4>(raw_array, (int)Dqn_ArrayCount(raw_array));
Dqn_FixedArray_EraseUnstable(&array, 0);
TEST_EXPECT(testing_state, array.len == 2);
TEST_EXPECT(testing_state, array[0] == 3);
TEST_EXPECT(testing_state, array[1] == 2);
}
// NOTE: Dqn_FixedArray_Add
{
TEST_START_SCOPE(testing_state, "Add 1 element to array");
int const ITEM = 2;
int raw_array[] = {1};
auto array = Dqn_FixedArray_Init<int, 4>(raw_array, (int)Dqn_ArrayCount(raw_array));
Dqn_FixedArray_Add(&array, ITEM);
TEST_EXPECT(testing_state, array.len == 2);
TEST_EXPECT(testing_state, array[0] == 1);
TEST_EXPECT(testing_state, array[1] == ITEM);
}
// NOTE: Dqn_FixedArray_Clear
{
TEST_START_SCOPE(testing_state, "Clear array");
int raw_array[] = {1};
auto array = Dqn_FixedArray_Init<int, 4>(raw_array, (int)Dqn_ArrayCount(raw_array));
Dqn_FixedArray_Clear(&array);
TEST_EXPECT(testing_state, array.len == 0);
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_FixedString
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_FixedString");
// NOTE: Dqn_FixedString_Append
{
TEST_START_SCOPE(testing_state, "Append too much fails");
Dqn_FixedString<4> str = {};
TEST_EXPECT_MSG(testing_state, Dqn_FixedString_Append(&str, "abcd") == false, "We need space for the null-terminator");
}
// NOTE: Dqn_FixedString_AppendFmt
{
TEST_START_SCOPE(testing_state, "Append format string too much fails");
Dqn_FixedString<4> str = {};
TEST_EXPECT_MSG(testing_state, Dqn_FixedString_AppendFmt(&str, "abcd") == false, "We need space for the null-terminator");
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Str_ToI64
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_ToI64");
{
TEST_START_SCOPE(testing_state, "Convert nullptr");
i64 result = Dqn_Str_ToI64(nullptr);
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert empty string");
i64 result = Dqn_Str_ToI64("");
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1\"");
i64 result = Dqn_Str_ToI64("1");
TEST_EXPECT(testing_state, result == 1);
}
{
TEST_START_SCOPE(testing_state, "Convert \"-0\"");
i64 result = Dqn_Str_ToI64("-0");
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert \"-1\"");
i64 result = Dqn_Str_ToI64("-1");
TEST_EXPECT(testing_state, result == -1);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1.2\"");
i64 result = Dqn_Str_ToI64("1.2");
TEST_EXPECT(testing_state, result == 1);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1,234\"");
i64 result = Dqn_Str_ToI64("1,234");
TEST_EXPECT(testing_state, result == 1234);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1,2\"");
i64 result = Dqn_Str_ToI64("1,2");
TEST_EXPECT(testing_state, result == 12);
}
{
TEST_START_SCOPE(testing_state, "Convert \"12a3\"");
i64 result = Dqn_Str_ToI64("12a3");
TEST_EXPECT(testing_state, result == 12);
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Str_ToU64
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_ToU64");
{
TEST_START_SCOPE(testing_state, "Convert nullptr");
u64 result = Dqn_Str_ToU64(nullptr);
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert empty string");
u64 result = Dqn_Str_ToU64("");
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1\"");
u64 result = Dqn_Str_ToU64("1");
TEST_EXPECT(testing_state, result == 1);
}
{
TEST_START_SCOPE(testing_state, "Convert \"-0\"");
u64 result = Dqn_Str_ToU64("-0");
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert \"-1\"");
u64 result = Dqn_Str_ToU64("-1");
TEST_EXPECT(testing_state, result == 0);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1.2\"");
u64 result = Dqn_Str_ToU64("1.2");
TEST_EXPECT(testing_state, result == 1);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1,234\"");
u64 result = Dqn_Str_ToU64("1,234");
TEST_EXPECT(testing_state, result == 1234);
}
{
TEST_START_SCOPE(testing_state, "Convert \"1,2\"");
u64 result = Dqn_Str_ToU64("1,2");
TEST_EXPECT(testing_state, result == 12);
}
{
TEST_START_SCOPE(testing_state, "Convert \"12a3\"");
u64 result = Dqn_Str_ToU64("12a3");
TEST_EXPECT(testing_state, result == 12);
}
}
// ---------------------------------------------------------------------------------------------
//
// NOTE: Dqn_Str_Find
//
// ---------------------------------------------------------------------------------------------
{
TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_Find");
{
TEST_START_SCOPE(testing_state, "String (char) is not in buffer");
char const buf[] = "836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55";
char const find[] = "2";
char const *result = Dqn_Str_Find(buf, find, Dqn_CharCountI(buf), Dqn_CharCountI(find));
TEST_EXPECT(testing_state, result == nullptr);
}
{
TEST_START_SCOPE(testing_state, "String (char) is in buffer");
char const buf[] = "836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55";
char const find[] = "6";
char const *result = Dqn_Str_Find(buf, find, Dqn_CharCountI(buf), Dqn_CharCountI(find));
TEST_EXPECT(testing_state, result != nullptr);
TEST_EXPECT(testing_state, result[0] == '6' && result[1] == 'a');
}
}
}
int main(int argc, char *argv[])
{
(void)argv; (void)argc;
UnitTests();
return 0;
}