Dqn/dqn_unit_test.cpp
2017-07-16 20:47:49 +10:00

1967 lines
56 KiB
C++

#if (defined(_WIN32) || defined(_WIN64))
#define DQN_WIN32_IMPLEMENTATION
#include <Windows.h>
#endif
#if defined(__linux__)
#define DQN_UNIX_IMPLEMENTATION
#define HANDMADE_MATH_NO_SSE
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
#endif
#define DQN_PLATFORM_HEADER
#define DQN_IMPLEMENTATION
#include "dqn.h"
#define HANDMADE_MATH_IMPLEMENTATION
#define HANDMADE_MATH_CPP_MODE
#include "tests/HandmadeMath.h"
#include <limits.h>
#include <stdio.h>
FILE_SCOPE void PrintHeader(const char *const header)
{
DQN_ASSERT_HARD(header);
char buf[1024] = {};
DQN_ASSERT(Dqn_sprintf(buf, "// %s", header) < (i32)DQN_ARRAY_COUNT(buf));
printf("//////////////////////////////////////////////////////////////////\n");
printf("%s\n", buf);
printf("//////////////////////////////////////////////////////////////////\n");
}
void HandmadeMathVerifyMat4(DqnMat4 dqnMat, hmm_mat4 hmmMat)
{
f32 *hmmMatf = (f32 *)&hmmMat;
f32 *dqnMatf = (f32 *)&dqnMat;
const u32 EXPECTED_SIZE = 16;
u32 totalSize = DQN_ARRAY_COUNT(dqnMat.e) * DQN_ARRAY_COUNT(dqnMat.e[0]);
DQN_ASSERT(totalSize == EXPECTED_SIZE);
DQN_ASSERT(totalSize ==
(DQN_ARRAY_COUNT(hmmMat.Elements) * DQN_ARRAY_COUNT(hmmMat.Elements[0])));
for (u32 i = 0; i < EXPECTED_SIZE; i++)
{
const f32 EPSILON = 0.001f;
f32 diff = hmmMatf[i] - dqnMatf[i];
diff = DQN_ABS(diff);
DQN_ASSERT_MSG(diff < EPSILON, "hmmMatf[%d]: %f, dqnMatf[%d]: %f\n", i, hmmMatf[i], i,
dqnMatf[i]);
}
}
void HandmadeMathTest()
{
PrintHeader("DqnMath vs HandmadeMath Test");
// Test Perspective/Projection matrix values
if (1)
{
f32 aspectRatio = 1;
DqnMat4 dqnPerspective = DqnMat4_Perspective(90, aspectRatio, 100, 1000);
hmm_mat4 hmmPerspective = HMM_Perspective(90, aspectRatio, 100, 1000);
HandmadeMathVerifyMat4(dqnPerspective, hmmPerspective);
printf("HandmadeMathTest(): Perspective: Completed successfully\n");
}
// Test Mat4 translate * scale
if (1)
{
hmm_vec3 hmmVec = HMM_Vec3i(1, 2, 3);
DqnV3 dqnVec = DqnV3_3i(1, 2, 3);
DqnMat4 dqnTranslate = DqnMat4_Translate3f(dqnVec.x, dqnVec.y, dqnVec.z);
hmm_mat4 hmmTranslate = HMM_Translate(hmmVec);
HandmadeMathVerifyMat4(dqnTranslate, hmmTranslate);
hmm_vec3 hmmAxis = HMM_Vec3(0.5f, 0.2f, 0.7f);
DqnV3 dqnAxis = DqnV3_3f(0.5f, 0.2f, 0.7f);
f32 rotationInDegrees = 80.0f;
DqnMat4 dqnRotate = DqnMat4_Rotate(DQN_DEGREES_TO_RADIANS(rotationInDegrees), dqnAxis.x, dqnAxis.y, dqnAxis.z);
hmm_mat4 hmmRotate = HMM_Rotate(rotationInDegrees, hmmAxis);
HandmadeMathVerifyMat4(dqnRotate, hmmRotate);
dqnVec *= 2;
hmmVec *= 2;
DqnMat4 dqnScale = DqnMat4_Scale(dqnVec.x, dqnVec.y, dqnVec.z);
hmm_mat4 hmmScale = HMM_Scale(hmmVec);
HandmadeMathVerifyMat4(dqnScale, hmmScale);
DqnMat4 dqnTSMatrix = DqnMat4_Mul(dqnTranslate, dqnScale);
hmm_mat4 hmmTSMatrix = HMM_MultiplyMat4(hmmTranslate, hmmScale);
HandmadeMathVerifyMat4(dqnTSMatrix, hmmTSMatrix);
// Test Mat4 * MulV4
if (1)
{
DqnV4 dqnV4 = DqnV4_4f(1, 2, 3, 4);
hmm_vec4 hmmV4 = HMM_Vec4(1, 2, 3, 4);
DqnV4 dqnResult = DqnMat4_MulV4(dqnTSMatrix, dqnV4);
hmm_vec4 hmmResult = HMM_MultiplyMat4ByVec4(hmmTSMatrix, hmmV4);
DQN_ASSERT(dqnResult.x == hmmResult.X);
DQN_ASSERT(dqnResult.y == hmmResult.Y);
DQN_ASSERT(dqnResult.z == hmmResult.Z);
DQN_ASSERT(dqnResult.w == hmmResult.W);
printf("HandmadeMathTest(): Mat4 * MulV4: Completed successfully\n");
}
printf("HandmadeMathTest(): Translate/Scale/Rotate Mat4_Mul: Completed successfully\n");
}
}
void StringsTest()
{
PrintHeader("Strings Test");
// Char Checks
if (1)
{
DQN_ASSERT(DqnChar_IsAlpha('a') == true);
DQN_ASSERT(DqnChar_IsAlpha('A') == true);
DQN_ASSERT(DqnChar_IsAlpha('0') == false);
DQN_ASSERT(DqnChar_IsAlpha('@') == false);
DQN_ASSERT(DqnChar_IsAlpha(' ') == false);
DQN_ASSERT(DqnChar_IsAlpha('\n') == false);
DQN_ASSERT(DqnChar_IsDigit('1') == true);
DQN_ASSERT(DqnChar_IsDigit('n') == false);
DQN_ASSERT(DqnChar_IsDigit('N') == false);
DQN_ASSERT(DqnChar_IsDigit('*') == false);
DQN_ASSERT(DqnChar_IsDigit(' ') == false);
DQN_ASSERT(DqnChar_IsDigit('\n') == false);
DQN_ASSERT(DqnChar_IsAlphaNum('1') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('a') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('A') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('*') == false);
DQN_ASSERT(DqnChar_IsAlphaNum(' ') == false);
DQN_ASSERT(DqnChar_IsAlphaNum('\n') == false);
DQN_ASSERT(DqnChar_ToLower(L'A') == L'a');
DQN_ASSERT(DqnChar_ToLower(L'a') == L'a');
DQN_ASSERT(DqnChar_ToLower(L' ') == L' ');
DQN_ASSERT(DqnChar_ToUpper(L'A') == L'A');
DQN_ASSERT(DqnChar_ToUpper(L'a') == L'A');
DQN_ASSERT(DqnChar_ToUpper(L' ') == L' ');
printf("StringsTest(): CharChecks: Completed successfully\n");
}
// String Checks
if (1)
{
// strcmp
if (1)
{
const char *const a = "str_a";
// Check simple compares
if (1)
{
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == +0);
DQN_ASSERT(DqnStr_Cmp(a, "str_b") == -1);
DQN_ASSERT(DqnStr_Cmp("str_b", a) == +1);
DQN_ASSERT(DqnStr_Cmp(a, "") == +1);
DQN_ASSERT(DqnStr_Cmp("", "") == 0);
// NOTE: Check that the string has not been trashed.
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == +0);
}
// Check ops against null
if (1)
{
DQN_ASSERT(DqnStr_Cmp(NULL, NULL) != +0);
DQN_ASSERT(DqnStr_Cmp(a, NULL) != +0);
DQN_ASSERT(DqnStr_Cmp(NULL, a) != +0);
}
printf("StringsTest(): strcmp: Completed successfully\n");
}
// strlen
if (1)
{
const char *const a = "str_a";
DQN_ASSERT(DqnStr_Len(a) == 5);
DQN_ASSERT(DqnStr_Len("") == 0);
DQN_ASSERT(DqnStr_Len(" a ") == 6);
DQN_ASSERT(DqnStr_Len("a\n") == 2);
// NOTE: Check that the string has not been trashed.
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == 0);
DQN_ASSERT(DqnStr_Len(NULL) == 0);
printf("StringsTest(): strlen: Completed successfully\n");
}
// strncpy
if (1)
{
if (1)
{
const char *const a = "str_a";
char b[10] = {};
// Check copy into empty array
if (1)
{
char *result = DqnStr_Copy(b, a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(b, "str_a") == 0);
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == 0);
DQN_ASSERT(DqnStr_Cmp(result, "str_a") == 0);
DQN_ASSERT(DqnStr_Len(result) == 5);
}
// Check copy into array offset, overlap with old results
if (1)
{
char *newResult = DqnStr_Copy(&b[1], a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(newResult, "str_a") == 0);
DQN_ASSERT(DqnStr_Len(newResult) == 5);
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == 0);
DQN_ASSERT(DqnStr_Len(a) == 5);
DQN_ASSERT(DqnStr_Cmp(b, "sstr_a") == 0);
DQN_ASSERT(DqnStr_Len(b) == 6);
}
}
}
// StrReverse
if (1)
{
// Basic reverse operations
if (1)
{
char a[] = "aba";
DQN_ASSERT(DqnStr_Reverse(a, DqnStr_Len(a)) == true);
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
DQN_ASSERT(DqnStr_Reverse(a, 2) == true);
DQN_ASSERT(DqnStr_Cmp(a, "baa") == 0);
DQN_ASSERT(DqnStr_Reverse(a, DqnStr_Len(a)) == true);
DQN_ASSERT(DqnStr_Cmp(a, "aab") == 0);
DQN_ASSERT(DqnStr_Reverse(&a[1], 2) == true);
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
DQN_ASSERT(DqnStr_Reverse(a, 0) == true);
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
}
// Try reverse empty string
if (1)
{
char a[] = "";
DQN_ASSERT(DqnStr_Reverse(a, DqnStr_Len(a)) == true);
DQN_ASSERT(DqnStr_Cmp(a, "") == 0);
}
// Try reverse single char string
if (1)
{
char a[] = "a";
DQN_ASSERT(DqnStr_Reverse(a, DqnStr_Len(a)) == true);
DQN_ASSERT(DqnStr_Cmp(a, "a") == 0);
DQN_ASSERT(DqnStr_Reverse(a, 0) == true);
DQN_ASSERT(DqnStr_Cmp(a, "a") == 0);
}
printf("StringsTest(): StrReverse: Completed successfully\n");
}
// const u64 LARGEST_NUM = (u64)-1;
const i64 SMALLEST_NUM = LLONG_MIN;
// StrToI64
if (1)
{
const char *const a = "123";
DQN_ASSERT(Dqn_StrToI64(a, DqnStr_Len(a)) == 123);
const char *const b = "-123";
DQN_ASSERT(Dqn_StrToI64(b, DqnStr_Len(b)) == -123);
DQN_ASSERT(Dqn_StrToI64(b, 1) == 0);
const char *const c = "-0";
DQN_ASSERT(Dqn_StrToI64(c, DqnStr_Len(c)) == 0);
const char *const d = "+123";
DQN_ASSERT(Dqn_StrToI64(d, DqnStr_Len(d)) == 123);
// TODO(doyle): Unsigned conversion
#if 0
char *e = "18446744073709551615";
DQN_ASSERT((u64)(Dqn_StrToI64(e, DqnStr_Len(e))) == LARGEST_NUM);
#endif
const char *const f = "-9223372036854775808";
DQN_ASSERT(Dqn_StrToI64(f, DqnStr_Len(f)) == SMALLEST_NUM);
printf("StringsTest(): StrToI64: Completed successfully\n");
}
// i64 to str
if (1)
{
char a[DQN_64BIT_NUM_MAX_STR_SIZE] = {};
Dqn_I64ToStr(+100, a, DQN_ARRAY_COUNT(a));
DQN_ASSERT(DqnStr_Cmp(a, "100") == 0);
char b[DQN_64BIT_NUM_MAX_STR_SIZE] = {};
Dqn_I64ToStr(-100, b, DQN_ARRAY_COUNT(b));
DQN_ASSERT(DqnStr_Cmp(b, "-100") == 0);
char c[DQN_64BIT_NUM_MAX_STR_SIZE] = {};
Dqn_I64ToStr(0, c, DQN_ARRAY_COUNT(c));
DQN_ASSERT(DqnStr_Cmp(c, "0") == 0);
#if 0
char d[DQN_64BIT_NUM_MAX_STR_SIZE] = {};
Dqn_I64ToStr(LARGEST_NUM, d, DQN_ARRAY_COUNT(d));
DQN_ASSERT(DqnStr_Cmp(d, "18446744073709551615") == 0);
#endif
if (sizeof(size_t) == sizeof(u64))
{
char e[DQN_64BIT_NUM_MAX_STR_SIZE] = {};
Dqn_I64ToStr(SMALLEST_NUM, e, DQN_ARRAY_COUNT(e));
DQN_ASSERT_MSG(DqnStr_Cmp(e, "-9223372036854775808") == 0, "e: %s", e);
}
printf("StringsTest(): I64ToStr: Completed successfully\n");
}
}
// StrToF32
if (1)
{
const f32 EPSILON = 0.001f;
const char a[] = "-0.66248";
f32 vA = Dqn_StrToF32(a, DQN_ARRAY_COUNT(a));
DQN_ASSERT(DQN_ABS(vA) - DQN_ABS(-0.66248f) < EPSILON);
const char b[] = "-0.632053";
f32 vB = Dqn_StrToF32(b, DQN_ARRAY_COUNT(b));
DQN_ASSERT(DQN_ABS(vB) - DQN_ABS(-0.632053f) < EPSILON);
const char c[] = "-0.244271";
f32 vC = Dqn_StrToF32(c, DQN_ARRAY_COUNT(c));
DQN_ASSERT(DQN_ABS(vC) - DQN_ABS(-0.244271f) < EPSILON);
const char d[] = "-0.511812";
f32 vD = Dqn_StrToF32(d, DQN_ARRAY_COUNT(d));
DQN_ASSERT(DQN_ABS(vD) - DQN_ABS(-0.511812f) < EPSILON);
const char e[] = "-0.845392";
f32 vE = Dqn_StrToF32(e, DQN_ARRAY_COUNT(e));
DQN_ASSERT(DQN_ABS(vE) - DQN_ABS(-0.845392f) < EPSILON);
const char f[] = "0.127809";
f32 vF = Dqn_StrToF32(f, DQN_ARRAY_COUNT(f));
DQN_ASSERT(DQN_ABS(vF) - DQN_ABS(-0.127809f) < EPSILON);
const char g[] = "0.532";
f32 vG = Dqn_StrToF32(g, DQN_ARRAY_COUNT(g));
DQN_ASSERT(DQN_ABS(vG) - DQN_ABS(-0.532f) < EPSILON);
const char h[] = "0.923";
f32 vH = Dqn_StrToF32(h, DQN_ARRAY_COUNT(h));
DQN_ASSERT(DQN_ABS(vH) - DQN_ABS(-0.923f) < EPSILON);
const char i[] = "0.000";
f32 vI = Dqn_StrToF32(i, DQN_ARRAY_COUNT(i));
DQN_ASSERT(DQN_ABS(vI) - DQN_ABS(-0.000f) < EPSILON);
const char j[] = "0.000283538";
f32 vJ = Dqn_StrToF32(j, DQN_ARRAY_COUNT(j));
DQN_ASSERT(DQN_ABS(vJ) - DQN_ABS(-0.000283538f) < EPSILON);
const char k[] = "-1.25";
f32 vK = Dqn_StrToF32(k, DQN_ARRAY_COUNT(k));
DQN_ASSERT(DQN_ABS(vK) - DQN_ABS(-1.25f) < EPSILON);
const char l[] = "0.286843";
f32 vL = Dqn_StrToF32(l, DQN_ARRAY_COUNT(l));
DQN_ASSERT(DQN_ABS(vL) - DQN_ABS(-0.286843f) < EPSILON);
const char m[] = "-0.406";
f32 vM = Dqn_StrToF32(m, DQN_ARRAY_COUNT(m));
DQN_ASSERT(DQN_ABS(vM) - DQN_ABS(-0.406f) < EPSILON);
const char n[] = "-0.892";
f32 vN = Dqn_StrToF32(n, DQN_ARRAY_COUNT(n));
DQN_ASSERT(DQN_ABS(vN) - DQN_ABS(-0.892f) < EPSILON);
const char o[] = "0.201";
f32 vO = Dqn_StrToF32(o, DQN_ARRAY_COUNT(o));
DQN_ASSERT(DQN_ABS(vO) - DQN_ABS(-0.201f) < EPSILON);
const char p[] = "1.25";
f32 vP = Dqn_StrToF32(p, DQN_ARRAY_COUNT(p));
DQN_ASSERT(DQN_ABS(vP) - DQN_ABS(1.25f) < EPSILON);
const char q[] = "9.64635e-05";
f32 vQ = Dqn_StrToF32(q, DQN_ARRAY_COUNT(q));
DQN_ASSERT(DQN_ABS(vQ) - DQN_ABS(9.64635e-05) < EPSILON);
const char r[] = "9.64635e+05";
f32 vR = Dqn_StrToF32(r, DQN_ARRAY_COUNT(r));
DQN_ASSERT(DQN_ABS(vR) - DQN_ABS(9.64635e+05) < EPSILON);
printf("StringsTest(): StrToF32: Completed successfully\n");
}
if (1)
{
if (1)
{
const char *const a = "Microsoft";
const char *const b = "icro";
i32 lenA = DqnStr_Len(a);
i32 lenB = DqnStr_Len(b);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, b, lenB) == true);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, "iro", DqnStr_Len("iro")) == false);
DQN_ASSERT(DqnStr_HasSubstring(b, lenB, a, lenA) == false);
DQN_ASSERT(DqnStr_HasSubstring("iro", DqnStr_Len("iro"), a, lenA) == false);
DQN_ASSERT(DqnStr_HasSubstring("", 0, "iro", 4) == false);
DQN_ASSERT(DqnStr_HasSubstring("", 0, "", 0) == false);
DQN_ASSERT(DqnStr_HasSubstring(NULL, 0, NULL, 0) == false);
}
if (1)
{
const char *const a = "Micro";
const char *const b = "irob";
i32 lenA = DqnStr_Len(a);
i32 lenB = DqnStr_Len(b);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, b, lenB) == false);
DQN_ASSERT(DqnStr_HasSubstring(b, lenB, a, lenA) == false);
}
printf("StringsTest(): StrHasSubstring: Completed successfully\n");
}
// UCS <-> UTF8 Checks
if (1)
{
// Test ascii characters
if (1)
{
u32 codepoint = '@';
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 1);
DQN_ASSERT(string[0] == '@');
bytesUsed = Dqn_UTF8ToUCS(&string[0], codepoint);
DQN_ASSERT(string[0] >= 0 && string[0] < 0x80);
DQN_ASSERT(bytesUsed == 1);
}
// Test 2 byte characters
if (1)
{
u32 codepoint = 0x278;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 2);
DQN_ASSERT(string[0] == 0xC9B8);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 2);
}
// Test 3 byte characters
if (1)
{
u32 codepoint = 0x0A0A;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 3);
DQN_ASSERT(string[0] == 0xE0A88A);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 3);
}
// Test 4 byte characters
if (1)
{
u32 codepoint = 0x10912;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 4);
DQN_ASSERT(string[0] == 0xF090A492);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 4);
}
if (1)
{
u32 codepoint = 0x10912;
u32 bytesUsed = Dqn_UCSToUTF8(NULL, codepoint);
DQN_ASSERT(bytesUsed == 0);
bytesUsed = Dqn_UTF8ToUCS(NULL, codepoint);
DQN_ASSERT(bytesUsed == 0);
}
printf("StringsTest(): ucs <-> utf8: Completed successfully\n");
}
printf("StringsTest(): Completed successfully\n");
}
void OtherTest()
{
PrintHeader("Other Test");
if (1)
{
#if defined(DQN_UNIX_PLATFORM)
f64 startInS = DqnTimer_NowInS();
u32 sleepTimeInS = 1;
sleep(sleepTimeInS);
f64 endInS = DqnTimer_NowInS();
printf("start: %f, end: %f\n", startInS, endInS);
DQN_ASSERT((startInS + sleepTimeInS) <= endInS);
#elif defined(DQN_WIN32_PLATFORM)
f64 startInMs = DqnTimer_NowInMs();
u32 sleepTimeInMs = 1000;
Sleep(sleepTimeInMs);
f64 endInMs = DqnTimer_NowInMs();
printf("start: %f, end: %f\n", startInMs, endInMs);
DQN_ASSERT((startInMs + sleepTimeInMs) <= endInMs);
#endif
printf("OtherTest(): TimeNow: Completed successfully\n");
}
printf("OtherTest(): Completed successfully\n");
}
void RandomTest()
{
PrintHeader("Random Number Generator Test");
DqnRandPCGState pcg;
DqnRnd_PCGInit(&pcg);
for (i32 i = 0; i < 1000000; i++)
{
i32 min = -100;
i32 max = 1000000000;
i32 result = DqnRnd_PCGRange(&pcg, min, max);
DQN_ASSERT(result >= min && result <= max);
f32 randF32 = DqnRnd_PCGNextf(&pcg);
DQN_ASSERT(randF32 >= 0.0f && randF32 <= 1.0f);
}
printf("RandomTest(): RndPCG: Completed successfully\n");
printf("RandomTest(): Completed successfully\n");
}
void MathTest()
{
PrintHeader("Math Test");
if (1)
{ // Lerp
if (1)
{
f32 start = 10;
f32 t = 0.5f;
f32 end = 20;
DQN_ASSERT(DqnMath_Lerp(start, t, end) == 15);
}
if (1)
{
f32 start = 10;
f32 t = 2.0f;
f32 end = 20;
DQN_ASSERT(DqnMath_Lerp(start, t, end) == 30);
}
printf("MathTest(): Lerp: Completed successfully\n");
}
if (1)
{ // sqrtf
DQN_ASSERT(DqnMath_Sqrtf(4.0f) == 2.0f);
printf("MathTest(): Sqrtf: Completed successfully\n");
}
printf("MathTest(): Completed successfully\n");
}
void VecTest()
{
PrintHeader("Math Vector Test");
if (1)
{ // V2
// V2 Creating
if (1)
{
DqnV2 vec = DqnV2_2f(5.5f, 5.0f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f);
DQN_ASSERT(vec.w == 5.5f && vec.h == 5.0f);
}
// V2 with 2 integers
if (1)
{
DqnV2 vec = DqnV2_2i(3, 5);
DQN_ASSERT(vec.x == 3 && vec.y == 5.0f);
DQN_ASSERT(vec.w == 3 && vec.h == 5.0f);
}
// V2 Arithmetic
if (1)
{
DqnV2 vecA = DqnV2_2f(5, 10);
DqnV2 vecB = DqnV2_2i(2, 3);
DQN_ASSERT(DqnV2_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV2_Equals(vecA, DqnV2_2f(5, 10)) == true);
DQN_ASSERT(DqnV2_Equals(vecB, DqnV2_2f(2, 3)) == true);
DqnV2 result = DqnV2_Add(vecA, DqnV2_2f(5, 10));
DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(10, 20)) == true);
result = DqnV2_Sub(result, DqnV2_2f(5, 10));
DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(5, 10)) == true);
result = DqnV2_Scalef(result, 5);
DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(25, 50)) == true);
result = DqnV2_Hadamard(result, DqnV2_2f(10, 0.5f));
DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(250, 25)) == true);
f32 dotResult = DqnV2_Dot(DqnV2_2f(5, 10), DqnV2_2f(3, 4));
DQN_ASSERT(dotResult == 55);
}
// Test operator overloading
if (1)
{
DqnV2 vecA = DqnV2_2f(5, 10);
DqnV2 vecB = DqnV2_2i(2, 3);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV2_2f(5, 10)) == true);
DQN_ASSERT((vecB == DqnV2_2f(2, 3)) == true);
DqnV2 result = vecA + DqnV2_2f(5, 10);
DQN_ASSERT((result == DqnV2_2f(10, 20)) == true);
result -= DqnV2_2f(5, 10);
DQN_ASSERT((result == DqnV2_2f(5, 10)) == true);
result *= 5;
DQN_ASSERT((result == DqnV2_2f(25, 50)) == true);
result = result * DqnV2_2f(10, 0.5f);
DQN_ASSERT((result == DqnV2_2f(250, 25)) == true);
result += DqnV2_2f(1, 1);
DQN_ASSERT((result == DqnV2_2f(251, 26)) == true);
result = result - DqnV2_2f(1, 1);
DQN_ASSERT((result == DqnV2_2f(250, 25)) == true);
}
// V2 Properties
if (1)
{
const f32 EPSILON = 0.001f;
DqnV2 a = DqnV2_2f(0, 0);
DqnV2 b = DqnV2_2f(3, 4);
f32 lengthSq = DqnV2_LengthSquared(a, b);
DQN_ASSERT(lengthSq == 25);
f32 length = DqnV2_Length(a, b);
DQN_ASSERT(length == 5);
DqnV2 normalised = DqnV2_Normalise(b);
f32 normX = b.x / 5.0f;
f32 normY = b.y / 5.0f;
f32 diffNormX = normalised.x - normX;
f32 diffNormY = normalised.y - normY;
DQN_ASSERT_MSG(diffNormX < EPSILON, "normalised.x: %f, normX: %f\n", normalised.x,
normX);
DQN_ASSERT_MSG(diffNormY < EPSILON, "normalised.y: %f, normY: %f\n", normalised.y,
normY);
DqnV2 c = DqnV2_2f(3.5f, 8.0f);
DQN_ASSERT(DqnV2_Overlaps(b, c) == true);
DQN_ASSERT(DqnV2_Overlaps(b, a) == false);
DqnV2 d = DqnV2_Perpendicular(c);
DQN_ASSERT(DqnV2_Dot(c, d) == 0);
}
if (1)
{ // constrain_to_ratio
DqnV2 ratio = DqnV2_2f(16, 9);
DqnV2 dim = DqnV2_2f(2000, 1080);
DqnV2 result = DqnV2_ConstrainToRatio(dim, ratio);
DQN_ASSERT(result.w == 1920 && result.h == 1080);
}
printf("VecTest(): Vec2: Completed successfully\n");
}
if (1)
{ // V3
// V3i Creating
if (1)
{
DqnV3 vec = DqnV3_3f(5.5f, 5.0f, 5.875f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f);
DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f);
}
// V3i Creating
if (1)
{
DqnV3 vec = DqnV3_3i(3, 4, 5);
DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5);
DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5);
}
// V3 Arithmetic
if (1)
{
DqnV3 vecA = DqnV3_3f(5, 10, 15);
DqnV3 vecB = DqnV3_3f(2, 3, 6);
DQN_ASSERT(DqnV3_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV3_Equals(vecA, DqnV3_3f(5, 10, 15)) == true);
DQN_ASSERT(DqnV3_Equals(vecB, DqnV3_3f(2, 3, 6)) == true);
DqnV3 result = DqnV3_Add(vecA, DqnV3_3f(5, 10, 15));
DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(10, 20, 30)) == true);
result = DqnV3_Sub(result, DqnV3_3f(5, 10, 15));
DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(5, 10, 15)) == true);
result = DqnV3_Scalef(result, 5);
DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(25, 50, 75)) == true);
result = DqnV3_Hadamard(result, DqnV3_3f(10.0f, 0.5f, 10.0f));
DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(250, 25, 750)) == true);
f32 dotResult = DqnV3_Dot(DqnV3_3f(5, 10, 2), DqnV3_3f(3, 4, 6));
DQN_ASSERT(dotResult == 67);
DqnV3 cross = DqnV3_Cross(vecA, vecB);
DQN_ASSERT(DqnV3_Equals(cross, DqnV3_3f(15, 0, -5)) == true);
}
if (1)
{
DqnV3 vecA = DqnV3_3f(5, 10, 15);
DqnV3 vecB = DqnV3_3f(2, 3, 6);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV3_3f(5, 10, 15)) == true);
DQN_ASSERT((vecB == DqnV3_3f(2, 3, 6)) == true);
DqnV3 result = vecA + DqnV3_3f(5, 10, 15);
DQN_ASSERT((result == DqnV3_3f(10, 20, 30)) == true);
result -= DqnV3_3f(5, 10, 15);
DQN_ASSERT((result == DqnV3_3f(5, 10, 15)) == true);
result = result * 5;
DQN_ASSERT((result == DqnV3_3f(25, 50, 75)) == true);
result *= DqnV3_3f(10.0f, 0.5f, 10.0f);
DQN_ASSERT((result == DqnV3_3f(250, 25, 750)) == true);
result = result - DqnV3_3f(1, 1, 1);
DQN_ASSERT((result == DqnV3_3f(249, 24, 749)) == true);
result += DqnV3_3f(1, 1, 1);
DQN_ASSERT((result == DqnV3_3f(250, 25, 750)) == true);
}
printf("VecTest(): Vec3: Completed successfully\n");
}
if (1)
{ // V4
// V4 Creating
if (1)
{
DqnV4 vec = DqnV4_4f(5.5f, 5.0f, 5.875f, 5.928f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f && vec.w == 5.928f);
DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f && vec.a == 5.928f);
}
// V4i Creating
if (1)
{
DqnV4 vec = DqnV4_4i(3, 4, 5, 6);
DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5 && vec.w == 6);
DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5 && vec.a == 6);
}
// V4 Arithmetic
if (1)
{
DqnV4 vecA = DqnV4_4f(5, 10, 15, 20);
DqnV4 vecB = DqnV4_4i(2, 3, 6, 8);
DQN_ASSERT(DqnV4_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV4_Equals(vecA, DqnV4_4f(5, 10, 15, 20)) == true);
DQN_ASSERT(DqnV4_Equals(vecB, DqnV4_4f(2, 3, 6, 8)) == true);
DqnV4 result = DqnV4_Add(vecA, DqnV4_4f(5, 10, 15, 20));
DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(10, 20, 30, 40)) == true);
result = DqnV4_Sub(result, DqnV4_4f(5, 10, 15, 20));
DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(5, 10, 15, 20)) == true);
result = DqnV4_Scalef(result, 5);
DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(25, 50, 75, 100)) == true);
result = DqnV4_Hadamard(result, DqnV4_4f(10, 0.5f, 10, 0.25f));
DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(250, 25, 750, 25)) == true);
f32 dotResult = DqnV4_Dot(DqnV4_4f(5, 10, 2, 8), DqnV4_4f(3, 4, 6, 5));
DQN_ASSERT(dotResult == 107);
}
if (1)
{
DqnV4 vecA = DqnV4_4f(5, 10, 15, 20);
DqnV4 vecB = DqnV4_4i(2, 3, 6, 8);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV4_4f(5, 10, 15, 20)) == true);
DQN_ASSERT((vecB == DqnV4_4f(2, 3, 6, 8)) == true);
DqnV4 result = vecA + DqnV4_4f(5, 10, 15, 20);
DQN_ASSERT((result == DqnV4_4f(10, 20, 30, 40)) == true);
result = result - DqnV4_4f(5, 10, 15, 20);
DQN_ASSERT((result == DqnV4_4f(5, 10, 15, 20)) == true);
result = result * 5;
DQN_ASSERT((result == DqnV4_4f(25, 50, 75, 100)) == true);
result *= DqnV4_4f(10, 0.5f, 10, 0.25f);
DQN_ASSERT((result == DqnV4_4f(250, 25, 750, 25)) == true);
result += DqnV4_4f(1, 1, 1, 1);
DQN_ASSERT((result == DqnV4_4f(251, 26, 751, 26)) == true);
result -= DqnV4_4f(1, 1, 1, 1);
DQN_ASSERT((result == DqnV4_4f(250, 25, 750, 25)) == true);
}
printf("VecTest(): Vec4: Completed successfully\n");
}
// Rect
if (1)
{
// Test rect init functions
if (1)
{
DqnRect rect4f = DqnRect_4f(1.1f, 2.2f, 3.3f, 4.4f);
DqnRect rect4i = DqnRect_4i(1, 2, 3, 4);
DQN_ASSERT(rect4i.min.x == 1 && rect4i.min.y == 2);
DQN_ASSERT(rect4i.max.x == 3 && rect4i.max.y == 4);
DQN_ASSERT(rect4f.min.x == 1.1f && rect4f.min.y == 2.2f);
DQN_ASSERT(rect4f.max.x == 3.3f && rect4f.max.y == 4.4f);
DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20));
DQN_ASSERT(DqnV2_Equals(rect.min, DqnV2_2f(-10, -10)));
DQN_ASSERT(DqnV2_Equals(rect.max, DqnV2_2f(10, 10)));
}
// Test rect get size function
if (1)
{
// Test float rect
if (1)
{
DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20));
f32 width, height;
DqnRect_GetSize2f(rect, &width, &height);
DQN_ASSERT(width == 20);
DQN_ASSERT(height == 20);
DqnV2 dim = DqnRect_GetSizeV2(rect);
DQN_ASSERT(DqnV2_Equals(dim, DqnV2_2f(20, 20)));
}
// Test rect with float values and GetSize as 2 integers
if (1)
{
DqnRect rect = DqnRect_Init(DqnV2_2f(-10.5f, -10.5f), DqnV2_2f(20.5f, 20.5f));
i32 width, height;
DqnRect_GetSize2i(rect, &width, &height);
DQN_ASSERT(width == 20);
DQN_ASSERT(height == 20);
}
}
// Test rect get centre
DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20));
DqnV2 rectCenter = DqnRect_GetCentre(rect);
DQN_ASSERT(DqnV2_Equals(rectCenter, DqnV2_2f(0, 0)));
// Test clipping rect get centre
DqnRect clipRect = DqnRect_4i(-15, -15, 10, 10);
DqnRect clipResult = DqnRect_ClipRect(rect, clipRect);
DQN_ASSERT(clipResult.min.x == -10 && clipResult.min.y == -10);
DQN_ASSERT(clipResult.max.x == 10 && clipResult.max.y == 10);
// Test shifting rect
if (1)
{
DqnRect shiftedRect = DqnRect_Move(rect, DqnV2_2f(10, 0));
DQN_ASSERT(DqnV2_Equals(shiftedRect.min, DqnV2_2f(0, -10)));
DQN_ASSERT(DqnV2_Equals(shiftedRect.max, DqnV2_2f(20, 10)));
// Ensure dimensions have remained the same
if (1)
{
f32 width, height;
DqnRect_GetSize2f(shiftedRect, &width, &height);
DQN_ASSERT(width == 20);
DQN_ASSERT(height == 20);
DqnV2 dim = DqnRect_GetSizeV2(shiftedRect);
DQN_ASSERT(DqnV2_Equals(dim, DqnV2_2f(20, 20)));
}
// Test rect contains p
if (1)
{
DqnV2 inP = DqnV2_2f(5, 5);
DqnV2 outP = DqnV2_2f(100, 100);
DQN_ASSERT(DqnRect_ContainsP(shiftedRect, inP));
DQN_ASSERT(!DqnRect_ContainsP(shiftedRect, outP));
}
}
printf("VecTest(): Rect: Completed successfully\n");
}
printf("VecTest(): Completed successfully\n");
}
void ArrayTestMemAPIInternal(DqnArray<DqnV2> *array, DqnMemAPI memAPI)
{
PrintHeader("Array with Default Mem API Test");
if (1)
{
DQN_ASSERT(DqnArray_Init(array, 1, memAPI));
DQN_ASSERT(array->capacity == 1);
DQN_ASSERT(array->count == 0);
// Test basic insert
if (1)
{
DqnV2 va = DqnV2_2f(5, 10);
DQN_ASSERT(DqnArray_Push(array, va));
DqnV2 vb = array->data[0];
DQN_ASSERT(DqnV2_Equals(va, vb));
DQN_ASSERT(array->capacity == 1);
DQN_ASSERT(array->count == 1);
}
// Test array resizing and freeing
if (1)
{
DqnV2 va = DqnV2_2f(10, 15);
DQN_ASSERT(DqnArray_Push(array, va));
DqnV2 vb = array->data[0];
DQN_ASSERT(DqnV2_Equals(va, vb) == false);
vb = array->data[1];
DQN_ASSERT(DqnV2_Equals(va, vb) == true);
DQN_ASSERT(array->capacity == 2);
DQN_ASSERT(array->count == 2);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 3);
DQN_ASSERT(array->count == 3);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 4);
DQN_ASSERT(array->count == 4);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 5);
DQN_ASSERT(array->count == 5);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 6);
DQN_ASSERT(array->count == 6);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 7);
DQN_ASSERT(array->count == 7);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 8);
DQN_ASSERT(array->count == 8);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 9);
DQN_ASSERT(array->count == 9);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 10);
DQN_ASSERT(array->count == 10);
DQN_ASSERT(DqnArray_Push(array, va));
DQN_ASSERT(array->capacity == 12);
DQN_ASSERT(array->count == 11);
DqnV2 vc = DqnV2_2f(90, 100);
DQN_ASSERT(DqnArray_Push(array, vc));
DQN_ASSERT(array->capacity == 12);
DQN_ASSERT(array->count == 12);
DQN_ASSERT(DqnV2_Equals(vc, array->data[11]));
}
}
DQN_ASSERT(DqnArray_Free(array));
if (1)
{
DQN_ASSERT(DqnArray_Init(array, 1, memAPI));
DQN_ASSERT(array->capacity == 1);
DQN_ASSERT(array->count == 0);
}
DQN_ASSERT(DqnArray_Free(array));
if (1)
{
DqnV2 a = DqnV2_2f(1, 2);
DqnV2 b = DqnV2_2f(3, 4);
DqnV2 c = DqnV2_2f(5, 6);
DqnV2 d = DqnV2_2f(7, 8);
DQN_ASSERT(DqnArray_Init(array, 16, memAPI));
DQN_ASSERT(DqnArray_Remove(array, 0) == false);
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 0);
DQN_ASSERT(DqnArray_Clear(array));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 0);
DQN_ASSERT(DqnArray_Push(array, a));
DQN_ASSERT(DqnArray_Push(array, b));
DQN_ASSERT(DqnArray_Push(array, c));
DQN_ASSERT(DqnArray_Push(array, d));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 4);
DQN_ASSERT(DqnArray_Remove(array, 0));
DQN_ASSERT(DqnV2_Equals(array->data[0], d));
DQN_ASSERT(DqnV2_Equals(array->data[1], b));
DQN_ASSERT(DqnV2_Equals(array->data[2], c));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 3);
DQN_ASSERT(DqnArray_Remove(array, 2));
DQN_ASSERT(DqnV2_Equals(array->data[0], d));
DQN_ASSERT(DqnV2_Equals(array->data[1], b));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 2);
DQN_ASSERT(DqnArray_Remove(array, 100) == false);
DQN_ASSERT(DqnV2_Equals(array->data[0], d));
DQN_ASSERT(DqnV2_Equals(array->data[1], b));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 2);
DQN_ASSERT(DqnArray_Clear(array));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 0);
}
DQN_ASSERT(DqnArray_Free(array));
if (1)
{
DqnV2 a = DqnV2_2f(1, 2);
DqnV2 b = DqnV2_2f(3, 4);
DqnV2 c = DqnV2_2f(5, 6);
DqnV2 d = DqnV2_2f(7, 8);
DQN_ASSERT(DqnArray_Init(array, 16, memAPI));
DQN_ASSERT(DqnArray_Push(array, a));
DQN_ASSERT(DqnArray_Push(array, b));
DQN_ASSERT(DqnArray_Push(array, c));
DQN_ASSERT(DqnArray_Push(array, d));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 4);
DqnArray_RemoveStable(array, 0);
DQN_ASSERT(DqnV2_Equals(array->data[0], b));
DQN_ASSERT(DqnV2_Equals(array->data[1], c));
DQN_ASSERT(DqnV2_Equals(array->data[2], d));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 3);
DqnArray_RemoveStable(array, 1);
DQN_ASSERT(DqnV2_Equals(array->data[0], b));
DQN_ASSERT(DqnV2_Equals(array->data[1], d));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 2);
DqnArray_RemoveStable(array, 1);
DQN_ASSERT(DqnV2_Equals(array->data[0], b));
DQN_ASSERT(array->capacity == 16);
DQN_ASSERT(array->count == 1);
}
DQN_ASSERT(DqnArray_Free(array));
printf("ArrayTestMemAPIInternal(): Completed successfully\n");
}
void ArrayTest()
{
PrintHeader("Array Test");
DqnArray<DqnV2> array = {};
ArrayTestMemAPIInternal(&array, DqnMemAPI_DefaultUseCalloc());
printf("ArrayTest(): Completed successfully\n");
}
void MemStackTest()
{
PrintHeader("MemStack Test");
// Test over allocation, alignments, temp regions
if (1)
{
size_t allocSize = DQN_KILOBYTE(1);
DqnMemStack stack = {};
const u32 ALIGNMENT = 4;
DqnMemStack_Init(&stack, allocSize, false, ALIGNMENT);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == allocSize);
DQN_ASSERT(stack.block->used == 0);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
// Alocate A
size_t sizeA = (size_t)(allocSize * 0.5f);
void *resultA = DqnMemStack_Push(&stack, sizeA);
u64 resultAddrA = *((u64 *)resultA);
DQN_ASSERT(resultAddrA % ALIGNMENT == 0);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == allocSize);
DQN_ASSERT(stack.block->used >= sizeA + 0 && stack.block->used <= sizeA + 3);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
DQN_ASSERT(resultA);
u8 *ptrA = (u8 *)resultA;
for (u32 i = 0; i < sizeA; i++)
ptrA[i] = 1;
DqnMemStackBlock *blockA = stack.block;
// Alocate B
size_t sizeB = (size_t)(allocSize * 2.0f);
void *resultB = DqnMemStack_Push(&stack, sizeB);
u64 resultAddrB = *((u64 *)resultB);
DQN_ASSERT(resultAddrB % ALIGNMENT == 0);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == DQN_KILOBYTE(2));
// Since we alignment the pointers we return they can be within 0-3
// bytes of what we expect and since this is in a new block as well used
// will reflect just this allocation.
DQN_ASSERT(stack.block->used >= sizeB + 0 && stack.block->used <= sizeB + 3);
DQN_ASSERT(resultB);
u8 *ptrB = (u8 *)resultB;
for (u32 i = 0; i < sizeB; i++)
ptrB[i] = 2;
// Check that a new block was created since there wasn't enough space
DQN_ASSERT(stack.block->prevBlock == blockA);
DQN_ASSERT(stack.block != blockA);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
DQN_ASSERT(blockA->used == sizeA);
DqnMemStackBlock *blockB = stack.block;
// Check temp regions work
DqnMemStackTempRegion tempBuffer;
DQN_ASSERT(DqnMemStackTempRegion_Begin(&tempBuffer, &stack));
size_t sizeC = 1024 + 1;
void *resultC = DqnMemStack_Push(tempBuffer.stack, sizeC);
u64 resultAddrC = *((u64 *)resultC);
DQN_ASSERT(resultAddrC % ALIGNMENT == 0);
DQN_ASSERT(stack.block != blockB && stack.block != blockA);
DQN_ASSERT(stack.block->used >= sizeC + 0 && stack.block->used <= sizeC + 3);
DQN_ASSERT(stack.tempRegionCount == 1);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
// NOTE: Allocation should be aligned to 4 byte boundary
DQN_ASSERT(tempBuffer.stack->block->size == 2048);
u8 *ptrC = (u8 *)resultC;
for (u32 i = 0; i < sizeC; i++)
ptrC[i] = 3;
// Check that a new block was created since there wasn't enough space
DQN_ASSERT(stack.block->prevBlock == blockB);
DQN_ASSERT(stack.block != blockB);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
for (u32 i = 0; i < sizeA; i++)
DQN_ASSERT(ptrA[i] == 1);
for (u32 i = 0; i < sizeB; i++)
DQN_ASSERT(ptrB[i] == 2);
for (u32 i = 0; i < sizeC; i++)
DQN_ASSERT(ptrC[i] == 3);
// End temp region which should revert back to 2 linked stacks, A and B
DqnMemStackTempRegion_End(tempBuffer);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == sizeB);
DQN_ASSERT(stack.block->used >= sizeB + 0 && stack.block->used <= sizeB + 3);
DQN_ASSERT(stack.tempRegionCount == 0);
DQN_ASSERT(resultB);
DQN_ASSERT(stack.block->prevBlock == blockA);
DQN_ASSERT(stack.block != blockA);
DQN_ASSERT(blockA->used == sizeA);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
// Release the last linked stack from the push stack
DqnMemStack_FreeLastBlock(&stack);
// Which should return back to the 1st allocation
DQN_ASSERT(stack.block == blockA);
DQN_ASSERT(stack.block->memory);
DQN_ASSERT(stack.block->size == allocSize);
DQN_ASSERT(stack.block->used == sizeA);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
DQN_ASSERT(!stack.block->prevBlock);
// Free once more to release stack A memory
DqnMemStack_FreeLastBlock(&stack);
DQN_ASSERT(!stack.block);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
DQN_ASSERT(stack.tempRegionCount == 0);
}
// Test stack with fixed memory does not allocate more
if (1)
{
u8 memory[DQN_KILOBYTE(1)] = {};
DqnMemStack stack = {};
const u32 ALIGNMENT = 4;
DqnMemStack_InitWithFixedMem(&stack, memory, DQN_ARRAY_COUNT(memory), ALIGNMENT);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == DQN_ARRAY_COUNT(memory) - sizeof(DqnMemStackBlock));
DQN_ASSERT(stack.block->used == 0);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
// Allocation larger than stack mem size should fail
DQN_ASSERT(!DqnMemStack_Push(&stack, DQN_ARRAY_COUNT(memory) * 2));
// Check free does nothing
DqnMemStack_Free(&stack);
DqnMemStack_FreeLastBlock(&stack);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == DQN_ARRAY_COUNT(memory) - sizeof(DqnMemStackBlock));
DQN_ASSERT(stack.block->used == 0);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
}
// Test stack with fixed size, allocates once from platform but does not
// grow further
if (1)
{
size_t allocSize = DQN_KILOBYTE(1);
DqnMemStack stack = {};
const u32 ALIGNMENT = 4;
DqnMemStack_InitWithFixedSize(&stack, allocSize, false, ALIGNMENT);
DQN_ASSERT(stack.block && stack.block->memory);
DQN_ASSERT(stack.block->size == allocSize);
DQN_ASSERT(stack.block->used == 0);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
void *result = DqnMemStack_Push(&stack, (size_t)(0.5f * allocSize));
DQN_ASSERT(result);
// Allocating more should fail
DQN_ASSERT(!DqnMemStack_Push(&stack, allocSize));
// Freeing should work
DqnMemStack_Free(&stack);
DQN_ASSERT(!stack.block);
}
// Test freeing/clear block and alignment
if (1)
{
size_t firstBlockSize = DQN_KILOBYTE(1);
DqnMemStack stack = {};
const u32 ALIGNMENT = 16;
DqnMemStack_Init(&stack, firstBlockSize, false, ALIGNMENT);
DqnMemStackBlock *firstBlock = stack.block;
u8 *first = NULL;
{
u32 allocate40Bytes = 40;
u8 *data = (u8 *)DqnMemStack_Push(&stack, allocate40Bytes);
// Test that the allocation got aligned to 16 byte boundary
DQN_ASSERT(data);
DQN_ASSERT(stack.block->size == firstBlockSize);
DQN_ASSERT((size_t)data % ALIGNMENT == 0);
for (u32 i = 0; i < allocate40Bytes; i++)
data[i] = 'a';
// Clear the block, but don't zero it out
DqnMemStack_ClearCurrBlock(&stack, false);
for (u32 i = 0; i < allocate40Bytes; i++)
DQN_ASSERT(data[i] == 'a');
// Test clear reverted the use pointer
DQN_ASSERT(stack.block->used == 0);
DQN_ASSERT(stack.block->size == firstBlockSize);
// Reallocate the data
data = (u8 *)DqnMemStack_Push(&stack, firstBlockSize);
DQN_ASSERT(stack.block->size == firstBlockSize);
DQN_ASSERT((size_t)data % ALIGNMENT == 0);
// Fill with 'b's
for (u32 i = 0; i < firstBlockSize; i++)
data[i] = 'b';
// Clear block and zero it out
DqnMemStack_ClearCurrBlock(&stack, true);
for (u32 i = 0; i < firstBlockSize; i++)
DQN_ASSERT(data[i] == 0);
// General Check stack struct contains the values we expect from
// initialisation
DQN_ASSERT(stack.flags == 0);
DQN_ASSERT(stack.tempRegionCount == 0);
DQN_ASSERT(stack.byteAlign == ALIGNMENT);
DQN_ASSERT(stack.block->size == firstBlockSize);
// Write out data to current block
data = (u8 *)DqnMemStack_Push(&stack, firstBlockSize);
for (u32 i = 0; i < firstBlockSize; i++)
data[i] = 'c';
first = data;
}
// Force it to allocate three new blocks and write out data to each
size_t secondBlockSize = DQN_KILOBYTE(2);
u8 *second = (u8 *)DqnMemStack_Push(&stack, secondBlockSize);
DqnMemStackBlock *secondBlock = stack.block;
for (u32 i = 0; i < secondBlockSize; i++)
second[i] = 'd';
size_t thirdBlockSize = DQN_KILOBYTE(3);
u8 *third = (u8 *)DqnMemStack_Push(&stack, thirdBlockSize);
DqnMemStackBlock *thirdBlock = stack.block;
for (u32 i = 0; i < thirdBlockSize; i++)
third[i] = 'e';
size_t fourthBlockSize = DQN_KILOBYTE(4);
u8 *fourth = (u8 *)DqnMemStack_Push(&stack, fourthBlockSize);
DqnMemStackBlock *fourthBlock = stack.block;
for (u32 i = 0; i < fourthBlockSize; i++)
fourth[i] = 'f';
DQN_ASSERT((firstBlock != secondBlock) && (secondBlock != thirdBlock) &&
(thirdBlock != fourthBlock));
DQN_ASSERT(firstBlock->prevBlock == NULL);
DQN_ASSERT(secondBlock->prevBlock == firstBlock);
DQN_ASSERT(thirdBlock->prevBlock == secondBlock);
DQN_ASSERT(fourthBlock->prevBlock == thirdBlock);
// NOTE: Making blocks manually is not really recommended ..
// Try and free an invalid block by mocking a fake block
u8 fakeBlockMem[DQN_KILOBYTE(3)] = {};
DqnMemStackBlock fakeBlock = {};
fakeBlock.memory = fakeBlockMem;
fakeBlock.size = DQN_ARRAY_COUNT(fakeBlockMem);
fakeBlock.used = 0;
DQN_ASSERT(!DqnMemStack_FreeMemBlock(&stack, &fakeBlock));
// Ensure that the actual blocks are still valid and freeing did nothing
DQN_ASSERT(firstBlock->size == firstBlockSize);
DQN_ASSERT(secondBlock->size == secondBlockSize);
DQN_ASSERT(thirdBlock->size == thirdBlockSize);
DQN_ASSERT(fourthBlock->size == fourthBlockSize);
DQN_ASSERT(firstBlock->used == firstBlockSize);
DQN_ASSERT(secondBlock->used == secondBlockSize);
DQN_ASSERT(thirdBlock->used == thirdBlockSize);
DQN_ASSERT(fourthBlock->used == fourthBlockSize);
DQN_ASSERT((firstBlock != secondBlock) && (secondBlock != thirdBlock) &&
(thirdBlock != fourthBlock));
DQN_ASSERT(firstBlock->prevBlock == NULL);
DQN_ASSERT(secondBlock->prevBlock == firstBlock);
DQN_ASSERT(thirdBlock->prevBlock == secondBlock);
DQN_ASSERT(fourthBlock->prevBlock == thirdBlock);
for (u32 i = 0; i < firstBlockSize; i++)
DQN_ASSERT(first[i] == 'c');
for (u32 i = 0; i < secondBlockSize; i++)
DQN_ASSERT(second[i] == 'd');
for (u32 i = 0; i < thirdBlockSize; i++)
DQN_ASSERT(third[i] == 'e');
for (u32 i = 0; i < fourthBlockSize; i++)
DQN_ASSERT(fourth[i] == 'f');
// Free the first block
DqnMemStack_FreeMemBlock(&stack, firstBlock);
// Revalidate state
DQN_ASSERT(secondBlock->size == secondBlockSize);
DQN_ASSERT(thirdBlock->size == thirdBlockSize);
DQN_ASSERT(fourthBlock->size == fourthBlockSize);
DQN_ASSERT(secondBlock->used == secondBlockSize);
DQN_ASSERT(thirdBlock->used == thirdBlockSize);
DQN_ASSERT(fourthBlock->used == fourthBlockSize);
DQN_ASSERT((secondBlock != thirdBlock) && (thirdBlock != fourthBlock));
DQN_ASSERT(secondBlock->prevBlock == NULL);
DQN_ASSERT(thirdBlock->prevBlock == secondBlock);
DQN_ASSERT(fourthBlock->prevBlock == thirdBlock);
for (u32 i = 0; i < secondBlockSize; i++)
DQN_ASSERT(second[i] == 'd');
for (u32 i = 0; i < thirdBlockSize; i++)
DQN_ASSERT(third[i] == 'e');
for (u32 i = 0; i < fourthBlockSize; i++)
DQN_ASSERT(fourth[i] == 'f');
// Free the third block
DqnMemStack_FreeMemBlock(&stack, thirdBlock);
// Revalidate state
DQN_ASSERT(secondBlock->size == secondBlockSize);
DQN_ASSERT(fourthBlock->size == fourthBlockSize);
DQN_ASSERT(secondBlock->used == secondBlockSize);
DQN_ASSERT(fourthBlock->used == fourthBlockSize);
DQN_ASSERT(secondBlock != fourthBlock);
DQN_ASSERT(secondBlock->prevBlock == NULL);
DQN_ASSERT(fourthBlock->prevBlock == secondBlock);
for (u32 i = 0; i < secondBlockSize; i++)
DQN_ASSERT(second[i] == 'd');
for (u32 i = 0; i < fourthBlockSize; i++)
DQN_ASSERT(fourth[i] == 'f');
// Free the second block
DqnMemStack_FreeMemBlock(&stack, secondBlock);
// Revalidate state
DQN_ASSERT(fourthBlock->size == fourthBlockSize);
DQN_ASSERT(fourthBlock->used == fourthBlockSize);
DQN_ASSERT(fourthBlock->prevBlock == NULL);
for (u32 i = 0; i < fourthBlockSize; i++)
DQN_ASSERT(fourth[i] == 'f');
// Free the stack
DqnMemStack_Free(&stack);
DQN_ASSERT(!stack.block);
}
// Test pop
if (1)
{
// Test aligned pop
if (1)
{
DqnMemStack stack = {};
DqnMemStack_Init(&stack, DQN_KILOBYTE(1), true);
size_t allocSize = 512;
void *alloc = DqnMemStack_Push(&stack, allocSize);
DQN_ASSERT(stack.block->used == allocSize);
DQN_ASSERT(DqnMemStack_Pop(&stack, alloc, allocSize));
DQN_ASSERT(stack.block->used == 0);
DqnMemStack_Free(&stack);
}
// Test pop on a non-byte aligned allocation. This checks to see if
// Pop() doesn't naiively forget to re-byte align the passed in size.
if (1)
{
DqnMemStack stack = {};
DqnMemStack_Init(&stack, DQN_KILOBYTE(1), true);
size_t allocSize = 1;
void *alloc = DqnMemStack_Push(&stack, allocSize);
DQN_ASSERT(stack.block->used == DQN_ALIGN_POW_N(allocSize, stack.byteAlign));
DQN_ASSERT(DqnMemStack_Pop(&stack, alloc, allocSize));
DQN_ASSERT(stack.block->used == 0);
DqnMemStack_Free(&stack);
}
}
}
#ifdef DQN_XPLATFORM_LAYER
void FileTest()
{
PrintHeader("File Test");
// File i/o
if (1)
{
printf("start file tests");
// Test file open
if (1)
{
const char *const FILE_TO_OPEN = ".clang-format";
u32 expectedSize = 0;
#if defined(DQN_UNIX_IMPLEMENTATION)
{
struct stat fileStat = {0};
DQN_ASSERT(stat(FILE_TO_OPEN, &fileStat) == 0);
expectedSize = fileStat.st_size;
}
if (1)
{
// NOTE: cpuinfo is generated when queried, so a normal 'stat'
// should give us zero, but we fall back to manual byte checking
// which should give us the proper size.
size_t size = 0;
DQN_ASSERT(DqnFile_GetFileSize("/proc/cpuinfo", &size));
DQN_ASSERT(size > 0);
}
#elif defined(DQN_WIN32_IMPLEMENTATION)
{
HANDLE handle = CreateFile(FILE_TO_OPEN, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
if (handle == INVALID_HANDLE_VALUE)
{
DqnWin32_DisplayLastError("CreateFile() failed");
}
DQN_ASSERT(handle != INVALID_HANDLE_VALUE);
LARGE_INTEGER size;
DQN_ASSERT(GetFileSizeEx(handle, &size));
CloseHandle(handle);
expectedSize = size.LowPart;
}
#endif
if (1)
{
size_t size = 0;
DQN_ASSERT_HARD(DqnFile_GetFileSize(FILE_TO_OPEN, &size));
DQN_ASSERT_HARD(size == expectedSize);
}
DqnFile file = {};
DQN_ASSERT(DqnFile_Open(".clang-format", &file,
(DqnFilePermissionFlag_Write | DqnFilePermissionFlag_Read),
DqnFileAction_OpenOnly));
DQN_ASSERT_MSG(file.size == expectedSize,
"DqnFileOpen() failed: file.size: %d, expected:%d\n", file.size,
expectedSize);
u8 *buffer = (u8 *)calloc(1, (size_t)file.size * sizeof(u8));
DQN_ASSERT(DqnFile_Read(&file, buffer, (u32)file.size) == file.size);
free(buffer);
DqnFile_Close(&file);
DQN_ASSERT(!file.handle && file.size == 0 && file.permissionFlags == 0);
if (1)
{
DqnFile raiiFile = DqnFile(true);
if (raiiFile.Open(FILE_TO_OPEN,
DqnFilePermissionFlag_Write | DqnFilePermissionFlag_Read,
DqnFileAction_OpenOnly))
{
i32 breakHereToTestRaii = 0;
(void)breakHereToTestRaii;
}
}
}
// Test invalid file
if (1)
{
DqnFile file = {};
DQN_ASSERT(!DqnFile_Open("asdljasdnel;kajdf", &file,
(DqnFilePermissionFlag_Write | DqnFilePermissionFlag_Read),
DqnFileAction_OpenOnly));
DQN_ASSERT(file.size == 0);
DQN_ASSERT(file.permissionFlags == 0);
DQN_ASSERT(!file.handle);
printf("FileTest(): FileIO: Completed successfully\n");
}
}
////////////////////////////////////////////////////////////////////////////
// Write Test
////////////////////////////////////////////////////////////////////////////
if (1)
{
const char *fileNames[] = {"dqn_1", "dqn_2", "dqn_3", "dqn_4", "dqn_5"};
const char *writeData[] = {"1234", "2468", "36912", "481216", "5101520"};
DqnFile files[DQN_ARRAY_COUNT(fileNames)] = {};
// Write data out to some files
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
u32 permissions = DqnFilePermissionFlag_Read | DqnFilePermissionFlag_Write;
if (!DqnFile_Open(fileNames[i], files + i, permissions, DqnFileAction_ClearIfExist))
{
bool result = DqnFile_Open(fileNames[i], files + i, permissions,
DqnFileAction_CreateIfNotExist);
DQN_ASSERT(result);
}
size_t bytesToWrite = DqnStr_Len(writeData[i]);
u8 *dataToWrite = (u8 *)(writeData[i]);
size_t bytesWritten = DqnFile_Write(files + i, dataToWrite, bytesToWrite, 0);
DQN_ASSERT(bytesWritten == bytesToWrite);
DqnFile_Close(&files[i]);
}
DqnMemStack memStack = {};
DQN_ASSERT(DqnMemStack_Init(&memStack, DQN_MEGABYTE(1), true));
// Read data back in
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
// Manual read the file contents
{
u32 permissions = DqnFilePermissionFlag_Read;
DqnFile *file = files + i;
bool result = DqnFile_Open(fileNames[i], file, permissions, DqnFileAction_OpenOnly);
DQN_ASSERT(result);
u8 *buffer = (u8 *)DqnMemStack_Push(&memStack, file->size);
DQN_ASSERT(buffer);
size_t bytesRead = DqnFile_Read(&files[i], buffer, file->size);
DQN_ASSERT(bytesRead == file->size);
// Verify the data is the same as we wrote out
DQN_ASSERT(DqnStr_Cmp((char *)buffer, (writeData[i])) == 0);
// Delete when we're done with it
DQN_ASSERT(DqnMemStack_Pop(&memStack, buffer, file->size));
DqnFile_Close(file);
}
// Read using the ReadEntireFile api which doesn't need a file handle as an argument
{
size_t reqSize = 0;
DQN_ASSERT(DqnFile_GetFileSize(fileNames[i], &reqSize));
u8 *buffer = (u8 *)DqnMemStack_Push(&memStack, reqSize);
DQN_ASSERT(buffer);
size_t bytesRead = 0;
DQN_ASSERT(DqnFile_ReadEntireFile(fileNames[i], buffer, reqSize, &bytesRead));
DQN_ASSERT(bytesRead == reqSize);
// Verify the data is the same as we wrote out
DQN_ASSERT(DqnStr_Cmp((char *)buffer, (writeData[i])) == 0);
DQN_ASSERT(DqnMemStack_Pop(&memStack, buffer, reqSize));
}
DQN_ASSERT(DqnFile_Delete(fileNames[i]));
}
// Then check delete actually worked, files should not exist.
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
DqnFile dummy = {};
u32 permissions = DqnFilePermissionFlag_Read;
bool fileExists =
DqnFile_Open(fileNames[i], &dummy, permissions, DqnFileAction_OpenOnly);
DQN_ASSERT(!fileExists);
}
DqnMemStack_Free(&memStack);
}
////////////////////////////////////////////////////////////////////////////
// Test directory listing
////////////////////////////////////////////////////////////////////////////
if (1)
{
u32 numFiles;
#if defined(DQN_UNIX_IMPLEMENTATION)
char **filelist = DqnDir_Read(".", &numFiles);
#elif defined(DQN_WIN32_IMPLEMENTATION)
char **filelist = DqnDir_Read("*", &numFiles);
#endif
printf("FileTest(): DirRead: Display read files\n");
for (u32 i = 0; i < numFiles; i++)
printf("FileTest(): DirRead: %s\n", filelist[i]);
DqnDir_ReadFree(filelist, numFiles);
printf("FileTest(): DirRead: Completed successfully\n");
}
printf("FileTest(): Completed successfully\n");
}
#endif
FILE_SCOPE u32 volatile globalDebugCounter;
FILE_SCOPE DqnLock globalJobQueueLock;
const u32 QUEUE_SIZE = 256;
FILE_SCOPE void JobQueueDebugCallbackIncrementCounter(DqnJobQueue *const queue,
void *const userData)
{
(void)userData;
DQN_ASSERT(queue->size == QUEUE_SIZE);
{
DqnLockGuard guard = globalJobQueueLock.LockGuard();
globalDebugCounter++;
#if 0
u32 number = globalDebugCounter;
#if defined(DQN_WIN32_IMPLEMENTATION)
printf("JobQueueDebugCallbackIncrementCounter(): Thread %d: Incrementing Number: %d\n",
GetCurrentThreadId(), number);
#elif defined(DQN_UNIX_IMPLEMENTATION)
printf("JobQueueDebugCallbackIncrementCounter(): Thread unix: Incrementing Number: %d\n",
number);
#endif
#endif
}
}
FILE_SCOPE void JobQueueTest()
{
PrintHeader("Job Queue Multithreading Test");
globalDebugCounter = 0;
DqnMemStack memStack = {};
DQN_ASSERT_HARD(memStack.Init(DQN_MEGABYTE(1), true));
u32 numThreads, numCores;
DqnPlatform_GetNumThreadsAndCores(&numCores, &numThreads);
DQN_ASSERT(numThreads > 0 && numCores > 0);
u32 totalThreads = (numCores - 1) * numThreads;
if (totalThreads == 0) totalThreads = 1;
DqnJobQueue jobQueue = {};
DqnJob *jobList = (DqnJob *)memStack.Push(sizeof(*jobQueue.jobList) * QUEUE_SIZE);
DQN_ASSERT(DqnJobQueue_Init(&jobQueue, jobList, QUEUE_SIZE, totalThreads));
const u32 WORK_ENTRIES = 2048;
DQN_ASSERT(DqnLock_Init(&globalJobQueueLock));
for (u32 i = 0; i < WORK_ENTRIES; i++)
{
DqnJob job = {};
job.callback = JobQueueDebugCallbackIncrementCounter;
while (!DqnJobQueue_AddJob(&jobQueue, job))
{
DqnJobQueue_TryExecuteNextJob(&jobQueue);
}
}
DqnJobQueue_BlockAndCompleteAllJobs(&jobQueue);
printf("JobQueueTest(): Final incremented value: %d\n", globalDebugCounter);
DQN_ASSERT(globalDebugCounter == WORK_ENTRIES);
DqnLock_Delete(&globalJobQueueLock);
}
FILE_SCOPE inline bool Dqn_QuickSortLessThanU32(const void *const val1, const void *const val2)
{
const u32 *const a = (u32 *)val1;
const u32 *const b = (u32 *)val2;
return (*a) < (*b);
}
FILE_SCOPE inline void Dqn_QuickSortSwapU32(void *const val1, void *const val2)
{
u32 *a = (u32 *)val1;
u32 *b = (u32 *)val2;
DQN_SWAP(u32, *a, *b);
}
#include <algorithm>
void SortTest()
{
{
u32 array[] = {4, 8, 7, 5, 2, 3, 6};
Dqn_QuickSortC(array, sizeof(array[0]), DQN_ARRAY_COUNT(array), Dqn_QuickSortLessThanU32,
Dqn_QuickSortSwapU32);
for (u32 i = 0; i < DQN_ARRAY_COUNT(array) - 1; i++)
{
DQN_ASSERT(array[i] <= array[i + 1]);
}
}
PrintHeader("DqnSort vs std::Sort");
DqnRandPCGState state = {};
DqnRnd_PCGInit(&state);
if (1)
{
DqnMemStack stack = {};
DQN_ASSERT(stack.Init(DQN_KILOBYTE(1), false));
// Create array of ints
u32 numInts = 1000000;
u32 sizeInBytes = sizeof(u32) * numInts;
u32 *dqnCArray = (u32 *)stack.Push(sizeInBytes);
u32 *dqnCPPArray = (u32 *)stack.Push(sizeInBytes);
u32 *stdArray = (u32 *)stack.Push(sizeInBytes);
DQN_ASSERT(dqnCArray && dqnCPPArray && stdArray);
f64 dqnCTimings[10] = {};
f64 dqnCPPTimings[DQN_ARRAY_COUNT(dqnCTimings)] = {};
f64 stdTimings[DQN_ARRAY_COUNT(dqnCTimings)] = {};
f64 dqnCAverage = 0;
f64 dqnCPPAverage = 0;
f64 stdAverage = 0;
for (u32 timingsIndex = 0; timingsIndex < DQN_ARRAY_COUNT(dqnCTimings); timingsIndex++)
{
// Populate with random numbers
for (u32 i = 0; i < numInts; i++)
{
dqnCArray[i] = DqnRnd_PCGNext(&state);
dqnCPPArray[i] = dqnCArray[i];
stdArray[i] = dqnCPPArray[i];
}
// Time Dqn_QuickSortC
{
f64 start = DqnTimer_NowInS();
Dqn_QuickSortC(dqnCArray, sizeof(dqnCArray[0]), numInts, Dqn_QuickSortLessThanU32,
Dqn_QuickSortSwapU32);
f64 duration = DqnTimer_NowInS() - start;
dqnCTimings[timingsIndex] = duration;
dqnCAverage += duration;
printf("[%02d]Dqn_QuickSortC: %f vs ", timingsIndex, dqnCTimings[timingsIndex]);
}
// Time Dqn_QuickSortC
{
f64 start = DqnTimer_NowInS();
Dqn_QuickSort(dqnCPPArray, numInts, Dqn_QuickSortLessThanU32);
f64 duration = DqnTimer_NowInS() - start;
dqnCPPTimings[timingsIndex] = duration;
dqnCPPAverage += duration;
printf("Dqn_QuickSort: %f vs ", dqnCPPTimings[timingsIndex]);
}
// Time std::sort
{
f64 start = DqnTimer_NowInS();
std::sort(stdArray, stdArray + numInts);
f64 duration = DqnTimer_NowInS() - start;
stdTimings[timingsIndex] = duration;
stdAverage += duration;
printf("std::sort: %f\n", stdTimings[timingsIndex]);
}
for (u32 i = 0; i < numInts; i++)
{
DQN_ASSERT_MSG(dqnCArray[i] == stdArray[i], "DqnArray[%d]: %d, stdArray[%d]: %d", i,
dqnCArray[i], stdArray[i], i);
}
}
// Print averages
if (1)
{
dqnCAverage /= (f64)DQN_ARRAY_COUNT(dqnCTimings);
dqnCPPAverage /= (f64)DQN_ARRAY_COUNT(dqnCPPTimings);
stdAverage /= (f64)DQN_ARRAY_COUNT(stdTimings);
printf("\n- Average Timings\n");
printf(" Dqn_QuickSortC: %f vs Dqn_QuickSort: %f vs std::sort: %f\n\n", dqnCAverage,
dqnCPPAverage, stdAverage);
}
stack.Pop(stdArray, sizeInBytes);
stack.Pop(dqnCPPArray, sizeInBytes);
stack.Pop(dqnCArray, sizeInBytes);
stack.Free();
}
}
int main(void)
{
StringsTest();
RandomTest();
MathTest();
HandmadeMathTest();
VecTest();
ArrayTest();
MemStackTest();
SortTest();
#ifdef DQN_XPLATFORM_LAYER
FileTest();
OtherTest();
JobQueueTest();
#endif
printf("\nPress 'Enter' Key to Exit\n");
getchar();
return 0;
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif