Dqn/DqnUnitTest.cpp
2018-07-28 17:40:57 +10:00

2435 lines
74 KiB
C++

#if defined(__linux__)
#define HANDMADE_MATH_NO_SSE
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
#endif
#if defined(_WIN32)
#define WIN32_MEAN_AND_LEAN
#include <Winsock2.h>
#include <ws2tcpip.h>
#include <Windows.h>
#endif
#define DQN_PLATFORM_HEADER
#define DQN_PLATFORM_IMPLEMENTATION
#define DQN_IMPLEMENTATION
#include "dqn.h"
#define HANDMADE_MATH_IMPLEMENTATION
#define HANDMADE_MATH_CPP_MODE
#include "tests/HandmadeMath.h"
#include <limits.h>
#include <stdio.h>
// TODO(doyle): Replace DQN_ASSERT with a non-halting assert that can connect to
// some sort of testing framework to track successes and failures.
#define LOG_HEADER() LogHeader(__func__)
FILE_SCOPE i32 globalIndent;
FILE_SCOPE bool globalNewLine;
#define RED "\x1B[31m"
#define GRN "\x1B[32m"
#define YEL "\x1B[33m"
#define BLU "\x1B[34m"
#define MAG "\x1B[35m"
#define CYN "\x1B[36m"
#define WHT "\x1B[37m"
#define RESET "\x1B[0m"
enum class Status
{
None,
Ok,
Error
};
void Log(Status status, char const *fmt, va_list argList)
{
DQN_ASSERT(globalIndent >= 0);
LOCAL_PERSIST i32 lineLen = 0;
char buf[1024] = {};
i32 bufLen = 0;
{
bufLen = Dqn_vsprintf(buf, fmt, argList);
DQN_ASSERT(bufLen < (i32)DQN_ARRAY_COUNT(buf));
lineLen += bufLen;
}
char indentStr[] = " ";
i32 indentLen = DQN_CHAR_COUNT(indentStr);
{
lineLen += (indentLen * globalIndent);
for (auto i = 0; i < globalIndent; i++)
printf("%s", indentStr);
printf("%s", &(buf[0]));
}
if (status == Status::Ok || status == Status::Error)
{
char okStatus[] = "OK";
char errStatus[] = "ERROR";
char *statusStr;
i32 statusStrLen;
if (status == Status::Ok)
{
statusStr = okStatus;
statusStrLen = DQN_CHAR_COUNT(okStatus);
}
else
{
statusStr = errStatus;
statusStrLen = DQN_CHAR_COUNT(errStatus);
}
lineLen += statusStrLen;
i32 targetLen = 90;
i32 remaining = targetLen - lineLen;
remaining = DQN_MAX(remaining, 0);
for (auto i = 0; i < remaining; i++)
putchar('.');
if (status == Status::Ok)
{
printf(GRN "%s" RESET, statusStr);
}
else
{
printf(RED "%s" RESET, statusStr);
}
}
if (globalNewLine)
{
lineLen = 0;
printf("\n");
}
}
void Log(Status status, char const *fmt, ...)
{
va_list argList;
va_start(argList, fmt);
Log(status, fmt, argList);
va_end(argList);
}
void Log(char const *fmt, ...)
{
va_list argList;
va_start(argList, fmt);
Log(Status::None, fmt, argList);
va_end(argList);
}
void LogHeader(char const *funcName)
{
globalIndent--;
Log("\n[%s]", funcName);
globalIndent++;
}
#include "DqnFixedString.cpp"
#include "DqnOS.cpp"
#include "DqnJson.cpp"
#include "DqnVHashTable.cpp"
#include "DqnMemStack.cpp"
void HandmadeMathVerifyMat4(DqnMat4 dqnMat, hmm_mat4 hmmMat)
{
f32 *hmmMatf = (f32 *)&hmmMat;
f32 *dqnMatf = (f32 *)&dqnMat;
const u32 EXPECTED_SIZE = 16;
u32 totalSize = DQN_ARRAY_COUNT(dqnMat.e) * DQN_ARRAY_COUNT(dqnMat.e[0]);
DQN_ASSERT(totalSize == EXPECTED_SIZE);
DQN_ASSERT(totalSize ==
(DQN_ARRAY_COUNT(hmmMat.Elements) * DQN_ARRAY_COUNT(hmmMat.Elements[0])));
for (u32 i = 0; i < EXPECTED_SIZE; i++)
{
const f32 EPSILON = 0.001f;
f32 diff = hmmMatf[i] - dqnMatf[i];
diff = DQN_ABS(diff);
DQN_ASSERTM(diff < EPSILON, "hmmMatf[%d]: %f, dqnMatf[%d]: %f\n", i, hmmMatf[i], i,
dqnMatf[i]);
}
}
void HandmadeMathTestInternal()
{
LOG_HEADER();
// Test Perspective/Projection matrix values
}
void Dqn_Test()
{
LOG_HEADER();
// const u64 LARGEST_NUM = (u64)-1;
const i64 SMALLEST_NUM = LLONG_MIN;
// StrToI64
if (1)
{
const char *const a = "123";
DQN_ASSERT(Dqn_StrToI64(a, DqnStr_Len(a)) == 123);
const char *const b = "-123";
DQN_ASSERT(Dqn_StrToI64(b, DqnStr_Len(b)) == -123);
DQN_ASSERT(Dqn_StrToI64(b, 1) == 0);
const char *const c = "-0";
DQN_ASSERT(Dqn_StrToI64(c, DqnStr_Len(c)) == 0);
const char *const d = "+123";
DQN_ASSERT(Dqn_StrToI64(d, DqnStr_Len(d)) == 123);
// TODO(doyle): Unsigned conversion
#if 0
char *e = "18446744073709551615";
DQN_ASSERT((u64)(Dqn_StrToI64(e, DqnStr_Len(e))) == LARGEST_NUM);
#endif
const char *const f = "-9223372036854775808";
DQN_ASSERT(Dqn_StrToI64(f, DqnStr_Len(f)) == SMALLEST_NUM);
Log("Dqn_StrToI64()");
}
// i64 to str
if (1)
{
char a[DQN_I64_MAX_STR_SIZE] = {};
Dqn_I64ToStr(+100, a, DQN_ARRAY_COUNT(a));
DQN_ASSERT(DqnStr_Cmp(a, "100") == 0);
char b[DQN_I64_MAX_STR_SIZE] = {};
Dqn_I64ToStr(-100, b, DQN_ARRAY_COUNT(b));
DQN_ASSERT(DqnStr_Cmp(b, "-100") == 0);
char c[DQN_I64_MAX_STR_SIZE] = {};
Dqn_I64ToStr(0, c, DQN_ARRAY_COUNT(c));
DQN_ASSERT(DqnStr_Cmp(c, "0") == 0);
#if 0
char d[DQN_I64_MAX_STR_SIZE] = {};
Dqn_I64ToStr(LARGEST_NUM, d, DQN_ARRAY_COUNT(d));
DQN_ASSERT(DqnStr_Cmp(d, "18446744073709551615") == 0);
#endif
if (sizeof(size_t) == sizeof(u64))
{
char e[DQN_I64_MAX_STR_SIZE] = {};
Dqn_I64ToStr(SMALLEST_NUM, e, DQN_ARRAY_COUNT(e));
DQN_ASSERTM(DqnStr_Cmp(e, "-9223372036854775808") == 0, "e: %s", e);
}
Log("Dqn_I64ToStr()");
}
// StrToF32
if (1)
{
const f32 EPSILON = 0.001f;
const char a[] = "-0.66248";
f32 vA = Dqn_StrToF32(a, DQN_ARRAY_COUNT(a));
DQN_ASSERT(DQN_ABS(vA) - DQN_ABS(-0.66248f) < EPSILON);
const char b[] = "-0.632053";
f32 vB = Dqn_StrToF32(b, DQN_ARRAY_COUNT(b));
DQN_ASSERT(DQN_ABS(vB) - DQN_ABS(-0.632053f) < EPSILON);
const char c[] = "-0.244271";
f32 vC = Dqn_StrToF32(c, DQN_ARRAY_COUNT(c));
DQN_ASSERT(DQN_ABS(vC) - DQN_ABS(-0.244271f) < EPSILON);
const char d[] = "-0.511812";
f32 vD = Dqn_StrToF32(d, DQN_ARRAY_COUNT(d));
DQN_ASSERT(DQN_ABS(vD) - DQN_ABS(-0.511812f) < EPSILON);
const char e[] = "-0.845392";
f32 vE = Dqn_StrToF32(e, DQN_ARRAY_COUNT(e));
DQN_ASSERT(DQN_ABS(vE) - DQN_ABS(-0.845392f) < EPSILON);
const char f[] = "0.127809";
f32 vF = Dqn_StrToF32(f, DQN_ARRAY_COUNT(f));
DQN_ASSERT(DQN_ABS(vF) - DQN_ABS(-0.127809f) < EPSILON);
const char g[] = "0.532";
f32 vG = Dqn_StrToF32(g, DQN_ARRAY_COUNT(g));
DQN_ASSERT(DQN_ABS(vG) - DQN_ABS(-0.532f) < EPSILON);
const char h[] = "0.923";
f32 vH = Dqn_StrToF32(h, DQN_ARRAY_COUNT(h));
DQN_ASSERT(DQN_ABS(vH) - DQN_ABS(-0.923f) < EPSILON);
const char i[] = "0.000";
f32 vI = Dqn_StrToF32(i, DQN_ARRAY_COUNT(i));
DQN_ASSERT(DQN_ABS(vI) - DQN_ABS(-0.000f) < EPSILON);
const char j[] = "0.000283538";
f32 vJ = Dqn_StrToF32(j, DQN_ARRAY_COUNT(j));
DQN_ASSERT(DQN_ABS(vJ) - DQN_ABS(-0.000283538f) < EPSILON);
const char k[] = "-1.25";
f32 vK = Dqn_StrToF32(k, DQN_ARRAY_COUNT(k));
DQN_ASSERT(DQN_ABS(vK) - DQN_ABS(-1.25f) < EPSILON);
const char l[] = "0.286843";
f32 vL = Dqn_StrToF32(l, DQN_ARRAY_COUNT(l));
DQN_ASSERT(DQN_ABS(vL) - DQN_ABS(-0.286843f) < EPSILON);
const char m[] = "-0.406";
f32 vM = Dqn_StrToF32(m, DQN_ARRAY_COUNT(m));
DQN_ASSERT(DQN_ABS(vM) - DQN_ABS(-0.406f) < EPSILON);
const char n[] = "-0.892";
f32 vN = Dqn_StrToF32(n, DQN_ARRAY_COUNT(n));
DQN_ASSERT(DQN_ABS(vN) - DQN_ABS(-0.892f) < EPSILON);
const char o[] = "0.201";
f32 vO = Dqn_StrToF32(o, DQN_ARRAY_COUNT(o));
DQN_ASSERT(DQN_ABS(vO) - DQN_ABS(-0.201f) < EPSILON);
const char p[] = "1.25";
f32 vP = Dqn_StrToF32(p, DQN_ARRAY_COUNT(p));
DQN_ASSERT(DQN_ABS(vP) - DQN_ABS(1.25f) < EPSILON);
const char q[] = "9.64635e-05";
f32 vQ = Dqn_StrToF32(q, DQN_ARRAY_COUNT(q));
DQN_ASSERT(DQN_ABS(vQ) - DQN_ABS(9.64635e-05) < EPSILON);
const char r[] = "9.64635e+05";
f32 vR = Dqn_StrToF32(r, DQN_ARRAY_COUNT(r));
DQN_ASSERT(DQN_ABS(vR) - DQN_ABS(9.64635e+05) < EPSILON);
Log("Dqn_StrToF32()");
}
// UCS <-> UTF8 Checks
if (1)
{
// Test ascii characters
if (1)
{
u32 codepoint = '@';
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 1);
DQN_ASSERT(string[0] == '@');
bytesUsed = Dqn_UTF8ToUCS(&string[0], codepoint);
DQN_ASSERT(string[0] >= 0 && string[0] < 0x80);
DQN_ASSERT(bytesUsed == 1);
Log("Dqn_UTF8ToUCS(): Test ascii characters");
}
// Test 2 byte characters
if (1)
{
u32 codepoint = 0x278;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 2);
DQN_ASSERT(string[0] == 0xC9B8);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 2);
Log("Dqn_UTF8ToUCS(): Test 2 byte characters");
}
// Test 3 byte characters
if (1)
{
u32 codepoint = 0x0A0A;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 3);
DQN_ASSERT(string[0] == 0xE0A88A);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 3);
Log("Dqn_UTF8ToUCS(): Test 3 byte characters");
}
// Test 4 byte characters
if (1)
{
u32 codepoint = 0x10912;
u32 string[1] = {};
u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint);
DQN_ASSERT(bytesUsed == 4);
DQN_ASSERT(string[0] == 0xF090A492);
bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]);
DQN_ASSERT(string[0] == codepoint);
DQN_ASSERT(bytesUsed == 4);
Log("Dqn_UTF8ToUCS(): Test 4 byte characters");
}
if (1)
{
u32 codepoint = 0x10912;
u32 bytesUsed = Dqn_UCSToUTF8(NULL, codepoint);
DQN_ASSERT(bytesUsed == 0);
bytesUsed = Dqn_UTF8ToUCS(NULL, codepoint);
DQN_ASSERT(bytesUsed == 0);
Log("Dqn_UTF8ToUCS(): Test return result on on NULL output param");
}
}
}
void DqnStr_Test()
{
// String Checks
if (1)
{
LOG_HEADER();
// strcmp
if (1)
{
const char *const a = "str_a";
// Check simple compares
if (1)
{
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == +0);
DQN_ASSERT(DqnStr_Cmp(a, "str_b") == -1);
DQN_ASSERT(DqnStr_Cmp("str_b", a) == +1);
DQN_ASSERT(DqnStr_Cmp(a, "") == +1);
DQN_ASSERT(DqnStr_Cmp("", "") == 0);
// NOTE: Check that the string has not been trashed.
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == +0);
Log("DqnStr_Cmp(): Check simple compares");
}
// Check ops against null
if (1)
{
DQN_ASSERT(DqnStr_Cmp(NULL, NULL) != +0);
DQN_ASSERT(DqnStr_Cmp(a, NULL) != +0);
DQN_ASSERT(DqnStr_Cmp(NULL, a) != +0);
Log("DqnStr_Cmp(): Check ops against null");
}
}
// strlen
if (1)
{
const char *const a = "str_a";
DQN_ASSERT(DqnStr_Len(a) == 5);
DQN_ASSERT(DqnStr_Len("") == 0);
DQN_ASSERT(DqnStr_Len(" a ") == 6);
DQN_ASSERT(DqnStr_Len("a\n") == 2);
// NOTE: Check that the string has not been trashed.
DQN_ASSERT(DqnStr_Cmp(a, "str_a") == 0);
DQN_ASSERT(DqnStr_Len(NULL) == 0);
Log("DqnStr_Len()");
}
// StrReverse
if (1)
{
// Basic reverse operations
if (1)
{
char a[] = "aba";
DqnStr_Reverse(a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
DqnStr_Reverse(a, 2);
DQN_ASSERT(DqnStr_Cmp(a, "baa") == 0);
DqnStr_Reverse(a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(a, "aab") == 0);
DqnStr_Reverse(&a[1], 2);
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
DqnStr_Reverse(a, 0);
DQN_ASSERT(DqnStr_Cmp(a, "aba") == 0);
Log("DqnStr_Reverse(): Basic reverse operations");
}
// Try reverse empty string
if (1)
{
char a[] = "";
DqnStr_Reverse(a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(a, "") == 0);
Log("DqnStr_Reverse(): Reverse empty string");
}
// Try reverse single char string
if (1)
{
char a[] = "a";
DqnStr_Reverse(a, DqnStr_Len(a));
DQN_ASSERT(DqnStr_Cmp(a, "a") == 0);
DqnStr_Reverse(a, 0);
DQN_ASSERT(DqnStr_Cmp(a, "a") == 0);
Log("DqnStr_Reverse(): Reverse single char string");
}
}
if (1)
{
const char *const a = "Microsoft";
const char *const b = "icro";
i32 lenA = DqnStr_Len(a);
i32 lenB = DqnStr_Len(b);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, b, lenB) == true);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, "iro", DqnStr_Len("iro")) == false);
DQN_ASSERT(DqnStr_HasSubstring(b, lenB, a, lenA) == false);
DQN_ASSERT(DqnStr_HasSubstring("iro", DqnStr_Len("iro"), a, lenA) == false);
DQN_ASSERT(DqnStr_HasSubstring("", 0, "iro", 4) == false);
DQN_ASSERT(DqnStr_HasSubstring("", 0, "", 0) == false);
DQN_ASSERT(DqnStr_HasSubstring(NULL, 0, NULL, 0) == false);
Log("DqnStr_HasSubstring(): Check string with matching substring");
}
if (1)
{
const char *const a = "Micro";
const char *const b = "irob";
i32 lenA = DqnStr_Len(a);
i32 lenB = DqnStr_Len(b);
DQN_ASSERT(DqnStr_HasSubstring(a, lenA, b, lenB) == false);
DQN_ASSERT(DqnStr_HasSubstring(b, lenB, a, lenA) == false);
Log("DqnStr_HasSubstring(): Check string with non-matching substring");
}
}
}
void DqnChar_Test()
{
LOG_HEADER();
// Char Checks
if (1)
{
DQN_ASSERT(DqnChar_IsAlpha('a') == true);
DQN_ASSERT(DqnChar_IsAlpha('A') == true);
DQN_ASSERT(DqnChar_IsAlpha('0') == false);
DQN_ASSERT(DqnChar_IsAlpha('@') == false);
DQN_ASSERT(DqnChar_IsAlpha(' ') == false);
DQN_ASSERT(DqnChar_IsAlpha('\n') == false);
Log(Status::Ok, "IsAlpha");
DQN_ASSERT(DqnChar_IsDigit('1') == true);
DQN_ASSERT(DqnChar_IsDigit('n') == false);
DQN_ASSERT(DqnChar_IsDigit('N') == false);
DQN_ASSERT(DqnChar_IsDigit('*') == false);
DQN_ASSERT(DqnChar_IsDigit(' ') == false);
DQN_ASSERT(DqnChar_IsDigit('\n') == false);
Log(Status::Ok, "IsDigit");
DQN_ASSERT(DqnChar_IsAlphaNum('1') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('a') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('A') == true);
DQN_ASSERT(DqnChar_IsAlphaNum('*') == false);
DQN_ASSERT(DqnChar_IsAlphaNum(' ') == false);
DQN_ASSERT(DqnChar_IsAlphaNum('\n') == false);
Log(Status::Ok, "IsAlphaNum");
DQN_ASSERT(DqnChar_ToLower(L'A') == L'a');
DQN_ASSERT(DqnChar_ToLower(L'a') == L'a');
DQN_ASSERT(DqnChar_ToLower(L' ') == L' ');
Log(Status::Ok, "ToLower");
DQN_ASSERT(DqnChar_ToUpper(L'A') == L'A');
DQN_ASSERT(DqnChar_ToUpper(L'a') == L'A');
DQN_ASSERT(DqnChar_ToUpper(L' ') == L' ');
Log(Status::Ok, "ToUpper");
DQN_ASSERT(DqnChar_IsWhitespace(' '));
DQN_ASSERT(DqnChar_IsWhitespace('\r'));
DQN_ASSERT(DqnChar_IsWhitespace('\n'));
DQN_ASSERT(DqnChar_IsWhitespace('\t'));
Log(Status::Ok, "IsWhiteSpace");
}
// Trim white space test
if (1)
{
if (1)
{
char a[] = "";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 0);
DQN_ASSERT(result == nullptr);
}
if (1)
{
char a[] = "a";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 1);
DQN_ASSERT(result == a);
}
if (1)
{
char a[] = " abc";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 3);
DQN_ASSERT(result == (a + 1));
}
if (1)
{
char a[] = "abc ";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 3);
DQN_ASSERT(result == a);
}
if (1)
{
char a[] = " abc ";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 3);
DQN_ASSERT(result == a + 3);
}
if (1)
{
char a[] = " ";
i32 newLen = 0;
auto *result = DqnChar_TrimWhitespaceAround(a, DQN_CHAR_COUNT(a), &newLen);
DQN_ASSERT(newLen == 0);
DQN_ASSERT(result == nullptr);
}
Log(Status::Ok, "TrimWhitespaceAround");
}
}
void DqnString_Test()
{
LOG_HEADER();
// Check fixed mem string doesn't allow string to expand and fail if try to append
if (1)
{
char space[4] = {};
DqnString str = {};
DQN_ASSERT(str.InitFixedMem(space, DQN_ARRAY_COUNT(space)));
DQN_ASSERT(str.Append("test_doesnt_fit") == false);
DQN_ASSERT(str.Append("tooo") == false);
DQN_ASSERT(str.Append("fit") == true);
DQN_ASSERT(str.Append("test_doesnt_fit") == false);
DQN_ASSERT(str.Append("1") == false);
DQN_ASSERT(str.str[str.len] == 0);
DQN_ASSERT(str.len <= str.max);
Log(Status::Ok, "Append: Check fixed mem string doesn't expand and fails");
}
// Try expanding string
if (1)
{
DqnString str = {};
DQN_ASSERT(str.InitLiteral("hello world"));
DQN_ASSERT(str.Append(", hello again"));
DQN_ASSERT(str.Append(", and hello again"));
DQN_ASSERT(str.str[str.len] == 0);
DQN_ASSERT(str.len <= str.max);
str.Free();
Log(Status::Ok, "Check expand on append");
}
}
void DqnRnd_Test()
{
LOG_HEADER();
auto pcg = DqnRndPCG();
for (i32 i = 0; i < 1000000; i++)
{
i32 min = -100;
i32 max = 1000000000;
i32 result = pcg.Range(min, max);
DQN_ASSERT(result >= min && result <= max);
f32 randF32 = pcg.Nextf();
DQN_ASSERT(randF32 >= 0.0f && randF32 <= 1.0f);
}
Log(Status::Ok, "DqnRndPCG");
}
void DqnMath_Test()
{
LOG_HEADER();
// Lerp
if (1)
{
if (1)
{
f32 start = 10;
f32 t = 0.5f;
f32 end = 20;
DQN_ASSERT(DqnMath_Lerp(start, t, end) == 15);
}
if (1)
{
f32 start = 10;
f32 t = 2.0f;
f32 end = 20;
DQN_ASSERT(DqnMath_Lerp(start, t, end) == 30);
}
Log(Status::Ok, "Lerp");
}
// Sqrtf
if (1)
{
DQN_ASSERT(DqnMath_Sqrtf(4.0f) == 2.0f);
Log(Status::Ok, "Sqrtf");
}
// Handmade Math Test
if (1)
{
if (1)
{
f32 aspectRatio = 1;
DqnMat4 dqnPerspective = DqnMat4_Perspective(90, aspectRatio, 100, 1000);
hmm_mat4 hmmPerspective = HMM_Perspective(90, aspectRatio, 100, 1000);
HandmadeMathVerifyMat4(dqnPerspective, hmmPerspective);
Log(Status::Ok, "HandmadeMathTest: Perspective");
}
// Test Mat4 translate * scale
if (1)
{
hmm_vec3 hmmVec = HMM_Vec3i(1, 2, 3);
DqnV3 dqnVec = DqnV3(1, 2, 3);
DqnMat4 dqnTranslate = DqnMat4_Translate3f(dqnVec.x, dqnVec.y, dqnVec.z);
hmm_mat4 hmmTranslate = HMM_Translate(hmmVec);
HandmadeMathVerifyMat4(dqnTranslate, hmmTranslate);
hmm_vec3 hmmAxis = HMM_Vec3(0.5f, 0.2f, 0.7f);
DqnV3 dqnAxis = DqnV3(0.5f, 0.2f, 0.7f);
f32 rotationInDegrees = 80.0f;
DqnMat4 dqnRotate = DqnMat4_Rotate(DQN_DEGREES_TO_RADIANS(rotationInDegrees), dqnAxis.x,
dqnAxis.y, dqnAxis.z);
hmm_mat4 hmmRotate = HMM_Rotate(rotationInDegrees, hmmAxis);
HandmadeMathVerifyMat4(dqnRotate, hmmRotate);
dqnVec *= 2;
hmmVec *= 2;
DqnMat4 dqnScale = DqnMat4_Scale(dqnVec.x, dqnVec.y, dqnVec.z);
hmm_mat4 hmmScale = HMM_Scale(hmmVec);
HandmadeMathVerifyMat4(dqnScale, hmmScale);
DqnMat4 dqnTSMatrix = DqnMat4_Mul(dqnTranslate, dqnScale);
hmm_mat4 hmmTSMatrix = HMM_MultiplyMat4(hmmTranslate, hmmScale);
HandmadeMathVerifyMat4(dqnTSMatrix, hmmTSMatrix);
// Test Mat4 * MulV4
if (1)
{
DqnV4 dqnV4 = DqnV4(1, 2, 3, 4);
hmm_vec4 hmmV4 = HMM_Vec4(1, 2, 3, 4);
DqnV4 dqnResult = DqnMat4_MulV4(dqnTSMatrix, dqnV4);
hmm_vec4 hmmResult = HMM_MultiplyMat4ByVec4(hmmTSMatrix, hmmV4);
DQN_ASSERT(dqnResult.x == hmmResult.X);
DQN_ASSERT(dqnResult.y == hmmResult.Y);
DQN_ASSERT(dqnResult.z == hmmResult.Z);
DQN_ASSERT(dqnResult.w == hmmResult.W);
Log(Status::Ok, "HandmadeMathTest: Mat4 * MulV4");
}
}
}
}
void DqnVX_Test()
{
LOG_HEADER();
// V2
if (1)
{
// Ctor
if (1)
{
// Ctor with floats
if (1)
{
DqnV2 vec = DqnV2(5.5f, 5.0f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f);
DQN_ASSERT(vec.w == 5.5f && vec.h == 5.0f);
}
// Ctor with 2 integers
if (1)
{
DqnV2 vec = DqnV2(3, 5);
DQN_ASSERT(vec.x == 3 && vec.y == 5.0f);
DQN_ASSERT(vec.w == 3 && vec.h == 5.0f);
}
Log(Status::Ok, "DqnV2: Ctor");
}
// V2 Arithmetic
if (1)
{
DqnV2 vecA = DqnV2(5, 10);
DqnV2 vecB = DqnV2(2, 3);
DQN_ASSERT(DqnV2_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV2_Equals(vecA, DqnV2(5, 10)) == true);
DQN_ASSERT(DqnV2_Equals(vecB, DqnV2(2, 3)) == true);
DqnV2 result = DqnV2_Add(vecA, DqnV2(5, 10));
DQN_ASSERT(DqnV2_Equals(result, DqnV2(10, 20)) == true);
result = DqnV2_Sub(result, DqnV2(5, 10));
DQN_ASSERT(DqnV2_Equals(result, DqnV2(5, 10)) == true);
result = DqnV2_Scalef(result, 5);
DQN_ASSERT(DqnV2_Equals(result, DqnV2(25, 50)) == true);
result = DqnV2_Hadamard(result, DqnV2(10.0f, 0.5f));
DQN_ASSERT(DqnV2_Equals(result, DqnV2(250, 25)) == true);
f32 dotResult = DqnV2_Dot(DqnV2(5, 10), DqnV2(3, 4));
DQN_ASSERT(dotResult == 55);
Log(Status::Ok, "DqnV2: Arithmetic");
}
// Test operator overloading
if (1)
{
DqnV2 vecA = DqnV2(5, 10);
DqnV2 vecB = DqnV2(2, 3);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV2(5, 10)) == true);
DQN_ASSERT((vecB == DqnV2(2, 3)) == true);
DqnV2 result = vecA + DqnV2(5, 10);
DQN_ASSERT((result == DqnV2(10, 20)) == true);
result -= DqnV2(5, 10);
DQN_ASSERT((result == DqnV2(5, 10)) == true);
result *= 5;
DQN_ASSERT((result == DqnV2(25, 50)) == true);
result = result * DqnV2(10.0f, 0.5f);
DQN_ASSERT((result == DqnV2(250, 25)) == true);
result += DqnV2(1, 1);
DQN_ASSERT((result == DqnV2(251, 26)) == true);
result = result - DqnV2(1, 1);
DQN_ASSERT((result == DqnV2(250, 25)) == true);
Log(Status::Ok, "DqnV2: Operator Overloading");
}
// V2 Properties
if (1)
{
const f32 EPSILON = 0.001f;
DqnV2 a = DqnV2(0, 0);
DqnV2 b = DqnV2(3, 4);
f32 lengthSq = DqnV2_LengthSquared(a, b);
DQN_ASSERT(lengthSq == 25);
f32 length = DqnV2_Length(a, b);
DQN_ASSERT(length == 5);
DqnV2 normalised = DqnV2_Normalise(b);
f32 normX = b.x / 5.0f;
f32 normY = b.y / 5.0f;
f32 diffNormX = normalised.x - normX;
f32 diffNormY = normalised.y - normY;
DQN_ASSERTM(diffNormX < EPSILON, "normalised.x: %f, normX: %f\n", normalised.x, normX);
DQN_ASSERTM(diffNormY < EPSILON, "normalised.y: %f, normY: %f\n", normalised.y, normY);
DqnV2 c = DqnV2(3.5f, 8.0f);
DQN_ASSERT(DqnV2_Overlaps(b, c) == true);
DQN_ASSERT(DqnV2_Overlaps(b, a) == false);
DqnV2 d = DqnV2_Perpendicular(c);
DQN_ASSERT(DqnV2_Dot(c, d) == 0);
Log(Status::Ok, "DqnV2: LengthSquared, Length, Normalize, Overlaps, Perp");
}
// ConstrainToRatio
if (1)
{
DqnV2 ratio = DqnV2(16, 9);
DqnV2 dim = DqnV2(2000, 1080);
DqnV2 result = DqnV2_ConstrainToRatio(dim, ratio);
DQN_ASSERT(result.w == 1920 && result.h == 1080);
Log(Status::Ok, "DqnV2: ConstrainToRatio");
}
}
// V3
if (1)
{
// Ctor
if (1)
{
// Floats
if (1)
{
DqnV3 vec = DqnV3(5.5f, 5.0f, 5.875f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f);
DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f);
}
// Integers
if (1)
{
DqnV3 vec = DqnV3(3, 4, 5);
DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5);
DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5);
}
Log(Status::Ok, "DqnV3: Ctor");
}
if (1)
{
// Arithmetic
if (1)
{
DqnV3 vecA = DqnV3(5, 10, 15);
DqnV3 vecB = DqnV3(2, 3, 6);
DQN_ASSERT(DqnV3_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV3_Equals(vecA, DqnV3(5, 10, 15)) == true);
DQN_ASSERT(DqnV3_Equals(vecB, DqnV3(2, 3, 6)) == true);
DqnV3 result = DqnV3_Add(vecA, DqnV3(5, 10, 15));
DQN_ASSERT(DqnV3_Equals(result, DqnV3(10, 20, 30)) == true);
result = DqnV3_Sub(result, DqnV3(5, 10, 15));
DQN_ASSERT(DqnV3_Equals(result, DqnV3(5, 10, 15)) == true);
result = DqnV3_Scalef(result, 5);
DQN_ASSERT(DqnV3_Equals(result, DqnV3(25, 50, 75)) == true);
result = DqnV3_Hadamard(result, DqnV3(10.0f, 0.5f, 10.0f));
DQN_ASSERT(DqnV3_Equals(result, DqnV3(250, 25, 750)) == true);
f32 dotResult = DqnV3_Dot(DqnV3(5, 10, 2), DqnV3(3, 4, 6));
DQN_ASSERT(dotResult == 67);
DqnV3 cross = DqnV3_Cross(vecA, vecB);
DQN_ASSERT(DqnV3_Equals(cross, DqnV3(15, 0, -5)) == true);
}
// Operator overloading
if (1)
{
DqnV3 vecA = DqnV3(5, 10, 15);
DqnV3 vecB = DqnV3(2, 3, 6);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV3(5, 10, 15)) == true);
DQN_ASSERT((vecB == DqnV3(2, 3, 6)) == true);
DqnV3 result = vecA + DqnV3(5, 10, 15);
DQN_ASSERT((result == DqnV3(10, 20, 30)) == true);
result -= DqnV3(5, 10, 15);
DQN_ASSERT((result == DqnV3(5, 10, 15)) == true);
result = result * 5;
DQN_ASSERT((result == DqnV3(25, 50, 75)) == true);
result *= DqnV3(10.0f, 0.5f, 10.0f);
DQN_ASSERT((result == DqnV3(250, 25, 750)) == true);
result = result - DqnV3(1, 1, 1);
DQN_ASSERT((result == DqnV3(249, 24, 749)) == true);
result += DqnV3(1, 1, 1);
DQN_ASSERT((result == DqnV3(250, 25, 750)) == true);
}
Log(Status::Ok, "DqnV3: Arithmetic");
}
}
// V4
if (1)
{
// Ctor
if (1)
{
// Floats
if (1)
{
DqnV4 vec = DqnV4(5.5f, 5.0f, 5.875f, 5.928f);
DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f && vec.w == 5.928f);
DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f && vec.a == 5.928f);
}
// Integers
if (1)
{
DqnV4 vec = DqnV4(3, 4, 5, 6);
DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5 && vec.w == 6);
DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5 && vec.a == 6);
}
Log(Status::Ok, "DqnV4: Ctor");
}
// V4 Arithmetic
if (1)
{
// Arithmetic
{
DqnV4 vecA = DqnV4(5, 10, 15, 20);
DqnV4 vecB = DqnV4(2, 3, 6, 8);
DQN_ASSERT(DqnV4_Equals(vecA, vecB) == false);
DQN_ASSERT(DqnV4_Equals(vecA, DqnV4(5, 10, 15, 20)) == true);
DQN_ASSERT(DqnV4_Equals(vecB, DqnV4(2, 3, 6, 8)) == true);
DqnV4 result = DqnV4_Add(vecA, DqnV4(5, 10, 15, 20));
DQN_ASSERT(DqnV4_Equals(result, DqnV4(10, 20, 30, 40)) == true);
result = DqnV4_Sub(result, DqnV4(5, 10, 15, 20));
DQN_ASSERT(DqnV4_Equals(result, DqnV4(5, 10, 15, 20)) == true);
result = DqnV4_Scalef(result, 5);
DQN_ASSERT(DqnV4_Equals(result, DqnV4(25, 50, 75, 100)) == true);
result = DqnV4_Hadamard(result, DqnV4(10.0f, 0.5f, 10.0f, 0.25f));
DQN_ASSERT(DqnV4_Equals(result, DqnV4(250, 25, 750, 25)) == true);
f32 dotResult = DqnV4_Dot(DqnV4(5, 10, 2, 8), DqnV4(3, 4, 6, 5));
DQN_ASSERT(dotResult == 107);
}
// Operator Overloading
if (1)
{
DqnV4 vecA = DqnV4(5, 10, 15, 20);
DqnV4 vecB = DqnV4(2, 3, 6, 8);
DQN_ASSERT((vecA == vecB) == false);
DQN_ASSERT((vecA == DqnV4(5, 10, 15, 20)) == true);
DQN_ASSERT((vecB == DqnV4(2, 3, 6, 8)) == true);
DqnV4 result = vecA + DqnV4(5, 10, 15, 20);
DQN_ASSERT((result == DqnV4(10, 20, 30, 40)) == true);
result = result - DqnV4(5, 10, 15, 20);
DQN_ASSERT((result == DqnV4(5, 10, 15, 20)) == true);
result = result * 5;
DQN_ASSERT((result == DqnV4(25, 50, 75, 100)) == true);
result *= DqnV4(10.0f, 0.5f, 10.0f, 0.25f);
DQN_ASSERT((result == DqnV4(250, 25, 750, 25)) == true);
result += DqnV4(1, 1, 1, 1);
DQN_ASSERT((result == DqnV4(251, 26, 751, 26)) == true);
result -= DqnV4(1, 1, 1, 1);
DQN_ASSERT((result == DqnV4(250, 25, 750, 25)) == true);
}
Log(Status::Ok, "DqnV4: Arithmetic");
}
}
}
void DqnRect_Test()
{
LOG_HEADER();
// Rect
if (1)
{
// Test rect init functions
if (1)
{
DqnRect rect4f = DqnRect(1.1f, 2.2f, 3.3f, 4.4f);
DqnRect rect4i = DqnRect(1, 2, 3, 4);
DQN_ASSERT(rect4i.min.x == 1 && rect4i.min.y == 2);
DQN_ASSERT(rect4i.max.x == 4 && rect4i.max.y == 6);
const f32 EPSILON = 0.001f;
f32 diffMaxX = rect4f.max.x - 4.4f;
f32 diffMaxY = rect4f.max.y - 6.6f;
DQN_ASSERT(rect4f.min.x == 1.1f && rect4f.min.y == 2.2f);
DQN_ASSERT(DQN_ABS(diffMaxX) < EPSILON && DQN_ABS(diffMaxY) < EPSILON);
DqnRect rect = DqnRect(-10, -10, 20, 20);
DQN_ASSERT(DqnV2_Equals(rect.min, DqnV2(-10, -10)));
DQN_ASSERT(DqnV2_Equals(rect.max, DqnV2(10, 10)));
Log(Status::Ok, "Ctor");
}
// Test rect get size function
if (1)
{
// Test float rect
if (1)
{
DqnRect rect = DqnRect(DqnV2(-10, -10), DqnV2(20, 20));
f32 width, height;
rect.GetSize(&width, &height);
DQN_ASSERT(width == 20);
DQN_ASSERT(height == 20);
DqnV2 dim = rect.GetSize();
DQN_ASSERT(DqnV2_Equals(dim, DqnV2(20, 20)));
Log(Status::Ok, "GetSize");
}
}
// Test rect get centre
DqnRect rect = DqnRect(DqnV2(-10, -10), DqnV2(20, 20));
DqnV2 rectCenter = rect.GetCenter();
DQN_ASSERT(DqnV2_Equals(rectCenter, DqnV2(0, 0)));
Log(Status::Ok, "GetCentre");
// Test clipping rect get centre
DqnRect clipRect = DqnRect(DqnV2(-15, -15), DqnV2(10, 10) + DqnV2(15));
DqnRect clipResult = rect.ClipRect(clipRect);
DQN_ASSERT(clipResult.min.x == -10 && clipResult.min.y == -10);
DQN_ASSERT(clipResult.max.x == 10 && clipResult.max.y == 10);
Log(Status::Ok, "ClipRect");
// Test shifting rect
if (1)
{
DqnRect shiftedRect = rect.Move(DqnV2(10, 0));
DQN_ASSERT(DqnV2_Equals(shiftedRect.min, DqnV2(0, -10)));
DQN_ASSERT(DqnV2_Equals(shiftedRect.max, DqnV2(20, 10)));
// Ensure dimensions have remained the same
if (1)
{
f32 width, height;
shiftedRect.GetSize(&width, &height);
DQN_ASSERT(width == 20);
DQN_ASSERT(height == 20);
DqnV2 dim = shiftedRect.GetSize();
DQN_ASSERT(DqnV2_Equals(dim, DqnV2(20, 20)));
}
// Test rect contains p
if (1)
{
DqnV2 inP = DqnV2(5, 5);
DqnV2 outP = DqnV2(100, 100);
DQN_ASSERT(shiftedRect.ContainsP(inP));
DQN_ASSERT(!shiftedRect.ContainsP(outP));
}
Log(Status::Ok, "Move");
}
}
}
void DqnArray_TestInternal(DqnMemAPI *const memAPI)
{
if (1)
{
DqnArray<DqnV2> array(memAPI);
if (1)
{
array.Reserve(1);
DQN_ASSERT(array.max >= 1);
DQN_ASSERT(array.count == 0);
// Test basic push
if (1)
{
DqnV2 va = DqnV2(5, 10);
DQN_ASSERT(array.Push(va));
DqnV2 vb = array.data[0];
DQN_ASSERT(DqnV2_Equals(va, vb));
DQN_ASSERT(array.max >= 1);
DQN_ASSERT(array.count == 1);
Log(Status::Ok, "Test basic push");
}
// Test array resizing and freeing
if (1)
{
DqnV2 va = DqnV2(10, 15);
DQN_ASSERT(array.Push(va));
DqnV2 vb = array.data[0];
DQN_ASSERT(DqnV2_Equals(va, vb) == false);
vb = array.data[1];
DQN_ASSERT(DqnV2_Equals(va, vb) == true);
DQN_ASSERT(array.max >= 2);
DQN_ASSERT(array.count == 2);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 3);
DQN_ASSERT(array.count == 3);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 4);
DQN_ASSERT(array.count == 4);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 5);
DQN_ASSERT(array.count == 5);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 6);
DQN_ASSERT(array.count == 6);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 7);
DQN_ASSERT(array.count == 7);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 8);
DQN_ASSERT(array.count == 8);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 9);
DQN_ASSERT(array.count == 9);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 10);
DQN_ASSERT(array.count == 10);
DQN_ASSERT(array.Push(va));
DQN_ASSERT(array.max >= 11);
DQN_ASSERT(array.count == 11);
DqnV2 vc = DqnV2(90, 100);
DQN_ASSERT(array.Push(vc));
DQN_ASSERT(array.max >= 12);
DQN_ASSERT(array.count == 12);
DQN_ASSERT(DqnV2_Equals(vc, array.data[11]));
Log(Status::Ok, "Test resizing and free");
}
array.Free();
// Test insert
if (1)
{
DqnV2 va = DqnV2(5, 10);
array.Push(va);
array.Push(va);
array.Push(va);
DqnV2 vb = DqnV2(1, 2);
array.Insert(-1, vb);
DQN_ASSERT(DqnV2_Equals(array.data[0], vb));
DqnV2 vc = DqnV2(2, 1);
array.Insert(array.count, vc);
DQN_ASSERT(DqnV2_Equals(array.data[array.count-1], vc));
DqnV2 vd = DqnV2(8, 9);
array.Insert(1, vd);
DQN_ASSERT(DqnV2_Equals(array.data[0], vb));
DQN_ASSERT(DqnV2_Equals(array.data[1], vd));
DQN_ASSERT(DqnV2_Equals(array.data[2], va));
DQN_ASSERT(DqnV2_Equals(array.data[3], va));
DQN_ASSERT(DqnV2_Equals(array.data[4], va));
DQN_ASSERT(DqnV2_Equals(array.data[5], vc));
Log(Status::Ok, "Test insert");
}
array.Free();
// Test multi-insert
if (1)
{
DqnV2 va[] = {DqnV2(5, 10), DqnV2(6, 10), DqnV2(7, 10)};
DqnV2 tmp = DqnV2(1, 1);
array.Push(tmp);
array.Push(tmp);
array.Push(tmp);
array.Insert(1, va, DQN_ARRAY_COUNT(va));
DQN_ASSERT(DqnV2_Equals(array.data[0], tmp));
DQN_ASSERT(DqnV2_Equals(array.data[1], va[0]));
DQN_ASSERT(DqnV2_Equals(array.data[2], va[1]));
DQN_ASSERT(DqnV2_Equals(array.data[3], va[2]));
DQN_ASSERT(DqnV2_Equals(array.data[4], tmp));
DQN_ASSERT(DqnV2_Equals(array.data[5], tmp));
Log(Status::Ok, "Test insert");
}
array.Free();
}
if (1)
{
array.Reserve(1);
DQN_ASSERT(array.max >= 1);
DQN_ASSERT(array.count == 0);
Log(Status::Ok, "Empty array");
}
array.Free();
if (1)
{
DqnV2 a = DqnV2(1, 2);
DqnV2 b = DqnV2(3, 4);
DqnV2 c = DqnV2(5, 6);
DqnV2 d = DqnV2(7, 8);
array.Reserve(16);
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 0);
array.Clear();
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 0);
DQN_ASSERT(array.Push(a));
DQN_ASSERT(array.Push(b));
DQN_ASSERT(array.Push(c));
DQN_ASSERT(array.Push(d));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 4);
array.Erase(0);
DQN_ASSERT(DqnV2_Equals(array.data[0], d));
DQN_ASSERT(DqnV2_Equals(array.data[1], b));
DQN_ASSERT(DqnV2_Equals(array.data[2], c));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 3);
array.Erase(2);
DQN_ASSERT(DqnV2_Equals(array.data[0], d));
DQN_ASSERT(DqnV2_Equals(array.data[1], b));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 2);
// array.Erase(100);
DQN_ASSERT(DqnV2_Equals(array.data[0], d));
DQN_ASSERT(DqnV2_Equals(array.data[1], b));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 2);
array.Clear();
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 0);
Log(Status::Ok, "Test removal");
}
array.Free();
array.memAPI = memAPI;
if (1)
{
DqnV2 a = DqnV2(1, 2);
DqnV2 b = DqnV2(3, 4);
DqnV2 c = DqnV2(5, 6);
DqnV2 d = DqnV2(7, 8);
array.Reserve(16);
DQN_ASSERT(array.Push(a));
DQN_ASSERT(array.Push(b));
DQN_ASSERT(array.Push(c));
DQN_ASSERT(array.Push(d));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 4);
array.EraseStable(0);
DQN_ASSERT(DqnV2_Equals(array.data[0], b));
DQN_ASSERT(DqnV2_Equals(array.data[1], c));
DQN_ASSERT(DqnV2_Equals(array.data[2], d));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 3);
array.EraseStable(1);
DQN_ASSERT(DqnV2_Equals(array.data[0], b));
DQN_ASSERT(DqnV2_Equals(array.data[1], d));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 2);
array.EraseStable(1);
DQN_ASSERT(DqnV2_Equals(array.data[0], b));
DQN_ASSERT(array.max >= 16);
DQN_ASSERT(array.count == 1);
Log(Status::Ok, "Test stable removal");
}
array.Free();
}
// TODO(doyle): Stable erase list API
#if 0
if (1)
{
// Test normal remove list scenario
if (1)
{
i64 indexesToFree[] = {3, 2, 1, 0};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 0);
array.Free();
}
// Test all indexes invalid
if (1)
{
i64 indexesToFree[] = {100, 200, 300, 400};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 4);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 32);
DQN_ASSERT(array.data[2] == 29);
DQN_ASSERT(array.data[3] == 31);
array.Free();
}
// Test remove singular index
if (1)
{
i64 indexesToFree[] = {1};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 3);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 29);
DQN_ASSERT(array.data[2] == 31);
array.Free();
}
// Test remove singular invalid index
if (1)
{
i64 indexesToFree[] = {100};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 4);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 32);
DQN_ASSERT(array.data[2] == 29);
DQN_ASSERT(array.data[3] == 31);
array.Free();
}
// Test remove second last index
if (1)
{
i64 indexesToFree[] = {2};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 3);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 32);
DQN_ASSERT(array.data[2] == 31);
array.Free();
}
// Test remove last 2 indexes
if (1)
{
i64 indexesToFree[] = {2, 3};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 2);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 32);
array.Free();
}
// Test invalid free index doesn't delete out of bounds
if (1)
{
i64 indexesToFree[] = {30, 1, 3};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 2);
DQN_ASSERT(array.data[0] == 128);
DQN_ASSERT(array.data[1] == 29);
array.Free();
}
// Test a free list including the first index
if (1)
{
i64 indexesToFree[] = {0, 1, 2};
i32 intList[] = {128, 32, 29, 31};
DqnArray<i32> array(memAPI);
array.Reserve(DQN_ARRAY_COUNT(intList));
array.Push(intList, DQN_ARRAY_COUNT(intList));
array.EraseStable(indexesToFree, DQN_ARRAY_COUNT(indexesToFree));
DQN_ASSERT(array.count == 1);
DQN_ASSERT(array.data[0] == 31);
array.Free();
}
Log(Status::Ok, "Test stable removal with list of indexes");
}
#endif
}
void DqnArray_TestRealDataInternal(DqnArray<char> *array)
{
(void)array;
#ifdef DQN_PLATFORM_HEADER
size_t bufSize = 0;
u8 *buf = DqnFile_ReadAll("tests/google-10000-english.txt", &bufSize);
DQN_ASSERT(buf);
for (usize i = 0; i < bufSize; i++)
array->Push(buf[i]);
DQN_ASSERT((size_t)array->count == bufSize);
for (auto i = 0; i < array->count; i++)
DQN_ASSERT(array->data[i] == buf[i]);
array->Free();
free(buf);
Log(Status::Ok, "Testing real data");
#endif
}
void DqnArray_Test()
{
LOG_HEADER();
if (1)
{
auto allocator = DqnMemAPI::HeapAllocator();
DqnArray_TestInternal(&allocator);
}
if (1)
{
if (1)
{
DqnArray<char> array1 = {};
array1.Reserve(3);
DQN_ASSERT(array1.count == 0);
DQN_ASSERT(array1.max == 3);
array1.Free();
array1.Reserve(0);
DQN_ASSERT(array1.count == 0);
DQN_ASSERT(array1.max == 0);
array1.Push('c');
DQN_ASSERT(array1.count == 1);
array1.Free();
Log(Status::Ok, "Testing faux-array constructors DqnArray_()");
}
if (1)
{
DqnArray<char> array = {};
array.Reserve(1);
DqnArray_TestRealDataInternal(&array);
}
if (1)
{
auto stack =
DqnMemStack(DQN_MEGABYTE(1), Dqn::ZeroClear::Yes, DqnMemStack::Flag::BoundsGuard);
if (1)
{
auto memGuard0 = stack.TempRegionGuard();
DqnArray<char> array(&stack.myHeadAPI);
array.Reserve(1);
DqnArray_TestRealDataInternal(&array);
}
// Test reallocing strategies for memory stacks
if (1)
{
auto memGuard0 = stack.TempRegionGuard();
DqnArray<char> array(&stack.myHeadAPI);
array.Reserve(128);
stack.Push(1024);
DqnArray_TestRealDataInternal(&array);
}
stack.Free();
}
}
}
#ifdef DQN_PLATFORM_HEADER
void DqnFile_Test()
{
LOG_HEADER();
// File i/o
if (1)
{
// Test file open
if (1)
{
const char *const FILE_TO_OPEN = ".clang-format";
u32 expectedSize = 0;
#if defined(DQN__IS_UNIX)
{
struct stat fileStat = {0};
DQN_ASSERT(stat(FILE_TO_OPEN, &fileStat) == 0);
expectedSize = fileStat.st_size;
}
if (1)
{
// NOTE: cpuinfo is generated when queried, so a normal 'stat'
// should give us zero, but we fall back to manual byte checking
// which should give us the proper size.
size_t size = 0;
DQN_ASSERT(DqnFile_Size("/proc/cpuinfo", &size));
DQN_ASSERT(size > 0);
}
#else
{
HANDLE handle = CreateFile(FILE_TO_OPEN, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
if (handle == INVALID_HANDLE_VALUE)
{
DqnWin32_DisplayLastError("CreateFile() failed");
}
DQN_ASSERT(handle != INVALID_HANDLE_VALUE);
LARGE_INTEGER size;
DQN_ASSERT(GetFileSizeEx(handle, &size));
CloseHandle(handle);
expectedSize = size.LowPart;
}
#endif
if (1)
{
size_t size = 0;
DQN_ASSERT(DqnFile_Size(FILE_TO_OPEN, &size));
DQN_ASSERT(size == expectedSize);
}
DqnFile file = {};
DQN_ASSERT(file.Open(
".clang-format", DqnFile::Flag::FileReadWrite, DqnFile::Action::OpenOnly));
DQN_ASSERTM(file.size == expectedSize,
"DqnFileOpen() failed: file.size: %d, expected:%d\n", file.size,
expectedSize);
u8 *buffer = (u8 *)calloc(1, (size_t)file.size * sizeof(u8));
DQN_ASSERT(file.Read(buffer, (u32)file.size) == file.size);
free(buffer);
file.Close();
DQN_ASSERT(!file.handle && file.size == 0 && file.flags == 0);
if (1)
{
DqnSmartFile raiiFile = {};
if (raiiFile.Open(
FILE_TO_OPEN, DqnFile::Flag::FileReadWrite, DqnFile::Action::OpenOnly))
{
i32 breakHereToTestRaii = 0;
(void)breakHereToTestRaii;
}
}
Log(Status::Ok, "General test");
}
// Test invalid file
if (1)
{
DqnFile file = {};
DQN_ASSERT(!file.Open(
"asdljasdnel;kajdf", DqnFile::Flag::FileReadWrite, DqnFile::Action::OpenOnly));
DQN_ASSERT(file.size == 0);
DQN_ASSERT(file.flags == 0);
DQN_ASSERT(!file.handle);
Log(Status::Ok, "Invalid file test");
}
}
// Write Test
if (1)
{
const char *fileNames[] = {"dqn_1", "dqn_2", "dqn_3", "dqn_4", "dqn_5"};
const char *writeData[] = {"1234", "2468", "36912", "481216", "5101520"};
DqnFile files[DQN_ARRAY_COUNT(fileNames)] = {};
// Write data out to some files
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
u32 permissions = DqnFile::Flag::FileReadWrite;
DqnFile *file = files + i;
if (!file->Open(fileNames[i], permissions, DqnFile::Action::ClearIfExist))
{
bool result =
file->Open(fileNames[i], permissions, DqnFile::Action::CreateIfNotExist);
DQN_ASSERT(result);
}
size_t bytesToWrite = DqnStr_Len(writeData[i]);
u8 *dataToWrite = (u8 *)(writeData[i]);
size_t bytesWritten = file->Write(dataToWrite, bytesToWrite, 0);
DQN_ASSERT(bytesWritten == bytesToWrite);
file->Close();
}
auto memStack = DqnMemStack(DQN_MEGABYTE(1), Dqn::ZeroClear::Yes, DqnMemStack::Flag::BoundsGuard);
// Read data back in
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
// Manual read the file contents
{
u32 permissions = DqnFile::Flag::FileRead;
DqnFile *file = files + i;
bool result = file->Open(fileNames[i], permissions, DqnFile::Action::OpenOnly);
DQN_ASSERT(result);
u8 *buffer = (u8 *)memStack.Push(file->size);
DQN_ASSERT(buffer);
size_t bytesRead = file->Read(buffer, file->size);
DQN_ASSERT(bytesRead == file->size);
// Verify the data is the same as we wrote out
DQN_ASSERT(DqnStr_Cmp((char *)buffer, (writeData[i]), (i32)bytesRead) == 0);
// Delete when we're done with it
memStack.Pop(buffer);
file->Close();
}
// Read using the ReadEntireFile api which doesn't need a file handle as an argument
{
size_t reqSize = 0;
DQN_ASSERT(DqnFile_Size(fileNames[i], &reqSize));
u8 *buffer = (u8 *)memStack.Push(reqSize);
DQN_ASSERT(buffer);
size_t bytesRead = 0;
DQN_ASSERT(DqnFile_ReadAll(fileNames[i], buffer, reqSize, &bytesRead));
DQN_ASSERT(bytesRead == reqSize);
// Verify the data is the same as we wrote out
DQN_ASSERT(DqnStr_Cmp((char *)buffer, (writeData[i]), (i32)reqSize) == 0);
memStack.Pop(buffer);
}
DQN_ASSERT(DqnFile_Delete(fileNames[i]));
}
// Then check delete actually worked, files should not exist.
for (u32 i = 0; i < DQN_ARRAY_COUNT(fileNames); i++)
{
DqnFile dummy = {};
u32 permissions = DqnFile::Flag::FileRead;
bool fileExists = dummy.Open(fileNames[i], permissions, DqnFile::Action::OpenOnly);
DQN_ASSERT(!fileExists);
}
memStack.Free();
Log(Status::Ok, "Write file");
}
// Test directory listing
if (1)
{
i32 numFiles;
#if defined(DQN___IS_UNIX)
char **filelist = DqnFile_ListDir(".", &numFiles);
#else
char **filelist = DqnFile_ListDir("*", &numFiles);
#endif
Log("Test directory listing");
globalIndent++;
for (auto i = 0; i < numFiles; i++)
Log("%02d: %s", i, filelist[i]);
DqnFile_ListDirFree(filelist, numFiles);
globalIndent--;
Log(Status::Ok, "List directory files");
}
}
void PlatformSleep(int milliseconds)
{
#if defined(DQN__IS_UNIX)
usleep(milliseconds * 1000);
#else
Sleep(milliseconds);
#endif
}
void DqnTimer_Test()
{
LOG_HEADER();
if (1)
{
int sleepTimeInMs = 250;
f64 startInMs = DqnTimer_NowInMs();
PlatformSleep(sleepTimeInMs);
f64 endInMs = DqnTimer_NowInMs();
DQN_ASSERT((startInMs + sleepTimeInMs) <= endInMs);
Log("start: %f, end: %f", startInMs, endInMs);
Log(Status::Ok, "Timer advanced in time over 1 second");
globalIndent++;
Log("Start: %f, End: %f", startInMs, endInMs);
globalIndent--;
}
}
FILE_SCOPE u32 volatile globalDebugCounter;
FILE_SCOPE DqnLock globalJobQueueLock;
const u32 QUEUE_SIZE = 256;
FILE_SCOPE void JobQueueDebugCallbackIncrementCounter(DqnJobQueue *const queue, void *const userData)
{
(void)userData;
DQN_ASSERT(queue->size == QUEUE_SIZE);
{
auto guard = globalJobQueueLock.Guard();
globalDebugCounter++;
// u32 number = globalDebugCounter;
#if defined(DQN__IS_WIN32)
// Log("JobQueueDebugCallbackIncrementCounter(): Thread %d: Incrementing Number: %d", GetCurrentThreadId(), number);
#else
// Log("JobQueueDebugCallbackIncrementCounter(): Thread unix: Incrementing Number: %d", number);
#endif
}
}
FILE_SCOPE void DqnJobQueue_Test()
{
LOG_HEADER();
globalDebugCounter = 0;
auto memStack = DqnMemStack(DQN_MEGABYTE(1), Dqn::ZeroClear::Yes, DqnMemStack::Flag::BoundsGuard);
u32 numThreads, numCores;
DqnOS_GetThreadsAndCores(&numCores, &numThreads);
DQN_ASSERT(numThreads > 0 && numCores > 0);
u32 totalThreads = (numCores - 1) * numThreads;
if (totalThreads == 0) totalThreads = 1;
DqnJobQueue jobQueue = {};
DqnJob *jobList = (DqnJob *)memStack.Push(sizeof(*jobQueue.jobList) * QUEUE_SIZE);
DQN_ASSERT(DqnJobQueue_Init(&jobQueue, jobList, QUEUE_SIZE, totalThreads));
const u32 WORK_ENTRIES = 2048;
DQN_ASSERT(globalJobQueueLock.Init());
for (u32 i = 0; i < WORK_ENTRIES; i++)
{
DqnJob job = {};
job.callback = JobQueueDebugCallbackIncrementCounter;
while (!DqnJobQueue_AddJob(&jobQueue, job))
{
DqnJobQueue_TryExecuteNextJob(&jobQueue);
}
}
DqnJobQueue_BlockAndCompleteAllJobs(&jobQueue);
DQN_ASSERT(globalDebugCounter == WORK_ENTRIES);
globalJobQueueLock.Delete();
Log("Final incremented value: %d\n", globalDebugCounter);
}
#else
f64 DqnTimer_NowInMs() { return 0; }
f64 DqnTimer_NowInS() { return 0; }
#endif // DQN_PLATFORM_HEADER
#include <algorithm>
void DqnQuickSort_Test()
{
LOG_HEADER();
auto state = DqnRndPCG();
if (1)
{
auto stack = DqnMemStack(DQN_KILOBYTE(1), Dqn::ZeroClear::Yes, DqnMemStack::Flag::BoundsGuard);
// Create array of ints
u32 numInts = 1000000;
u32 sizeInBytes = sizeof(u32) * numInts;
u32 *dqnCPPArray = (u32 *)stack.Push(sizeInBytes);
u32 *stdArray = (u32 *)stack.Push(sizeInBytes);
DQN_ASSERT(dqnCPPArray && stdArray);
f64 dqnCPPTimings[2] = {};
f64 stdTimings[DQN_ARRAY_COUNT(dqnCPPTimings)] = {};
f64 dqnCPPAverage = 0;
f64 stdAverage = 0;
Log("Timings"); globalIndent++;
for (u32 timingsIndex = 0; timingsIndex < DQN_ARRAY_COUNT(dqnCPPTimings); timingsIndex++)
{
// Populate with random numbers
for (u32 i = 0; i < numInts; i++)
{
dqnCPPArray[i] = state.Next();
stdArray[i] = dqnCPPArray[i];
}
globalNewLine = false;
Log("%02d: ", timingsIndex);
globalIndent -= 2;
// Time Dqn_QuickSort
{
f64 start = DqnTimer_NowInS();
DqnQuickSort(dqnCPPArray, numInts);
f64 duration = DqnTimer_NowInS() - start;
dqnCPPTimings[timingsIndex] = duration;
dqnCPPAverage += duration;
Log("Dqn_QuickSort: %f vs ", dqnCPPTimings[timingsIndex]);
}
// Time std::sort
globalNewLine = true;
{
f64 start = DqnTimer_NowInS();
std::sort(stdArray, stdArray + numInts);
f64 duration = DqnTimer_NowInS() - start;
stdTimings[timingsIndex] = duration;
stdAverage += duration;
Log("std::sort: %f", stdTimings[timingsIndex]);
}
globalIndent += 2;
// Validate algorithm is correct
for (u32 i = 0; i < numInts; i++)
{
DQN_ASSERTM(dqnCPPArray[i] == stdArray[i], "DqnArray[%d]: %d, stdArray[%d]: %d", i,
dqnCPPArray[i], stdArray[i], i);
}
}
globalIndent--;
// Print averages
if (1)
{
dqnCPPAverage /= (f64)DQN_ARRAY_COUNT(dqnCPPTimings);
stdAverage /= (f64)DQN_ARRAY_COUNT(stdTimings);
Log("Average Timings");
globalIndent++;
Log("Dqn_QuickSort: %f vs std::sort: %f\n", dqnCPPAverage, stdAverage);
globalIndent--;
}
stack.Free();
Log(Status::Ok, "QuickSort");
}
}
void DqnHashTable_Test()
{
LOG_HEADER();
DqnHashTable<u32> hashTable = {};
hashTable.Init(1);
{
hashTable.AddNewEntriesToFreeList(+2);
DQN_ASSERT(hashTable.freeList && hashTable.freeList->next);
DQN_ASSERT(hashTable.numFreeEntries == 2);
hashTable.AddNewEntriesToFreeList(-1);
DQN_ASSERT(hashTable.freeList && !hashTable.freeList->next);
DQN_ASSERT(hashTable.numFreeEntries == 1);
}
{
DQN_ASSERT(hashTable.Get("hello world") == nullptr);
DQN_ASSERT(hashTable.Get("collide key") == nullptr);
DQN_ASSERT(hashTable.Get("crash again") == nullptr);
bool entryAlreadyExisted = true;
auto helloEntry = hashTable.Make("hello world", -1, &entryAlreadyExisted);
DQN_ASSERT(entryAlreadyExisted == false);
entryAlreadyExisted = true;
auto collideEntry = hashTable.Make("collide key", -1, &entryAlreadyExisted);
DQN_ASSERT(entryAlreadyExisted == false);
entryAlreadyExisted = true;
auto crashEntry = hashTable.Make("crash again", -1, &entryAlreadyExisted);
DQN_ASSERT(entryAlreadyExisted == false);
helloEntry->data = 5;
collideEntry->data = 10;
crashEntry->data = 15;
DQN_ASSERT(hashTable.numFreeEntries == 0);
DqnHashTable<u32>::Entry *entry = *hashTable.entries;
DQN_ASSERT(entry->data == 15);
entry = entry->next;
DQN_ASSERT(entry->data == 10);
entry = entry->next;
DQN_ASSERT(entry->data == 5);
DQN_ASSERT(hashTable.usedEntriesIndex == 1);
DQN_ASSERT(hashTable.usedEntries[0] == 0);
DQN_ASSERT(hashTable.numFreeEntries == 0);
}
hashTable.Remove("hello world");
DQN_ASSERT(hashTable.ChangeNumEntries(512));
{
auto helloEntry = hashTable.Get("hello world");
DQN_ASSERT(helloEntry == nullptr);
auto collideEntry = hashTable.Get("collide key");
DQN_ASSERT(collideEntry->data == 10);
auto crashEntry = hashTable.Get("crash again");
DQN_ASSERT(crashEntry->data == 15);
bool entryAlreadyExisted = false;
collideEntry = hashTable.Make("collide key", -1, &entryAlreadyExisted);
DQN_ASSERT(entryAlreadyExisted == true);
entryAlreadyExisted = false;
crashEntry = hashTable.Make("crash again", -1, &entryAlreadyExisted);
DQN_ASSERT(entryAlreadyExisted == true);
}
hashTable.Free();
Log(Status::Ok, "HashTable");
}
void DqnBSearch_Test()
{
LOG_HEADER();
if (1)
{
u32 array[] = {1, 2, 3};
i64 result = DqnBSearch<u32>(array, DQN_ARRAY_COUNT(array), 1);
DQN_ASSERT(result == 0);
result = DqnBSearch<u32>(array, DQN_ARRAY_COUNT(array), 2);
DQN_ASSERT(result == 1);
result = DqnBSearch<u32>(array, DQN_ARRAY_COUNT(array), 3);
DQN_ASSERT(result == 2);
result = DqnBSearch<u32>(array, DQN_ARRAY_COUNT(array), 4);
DQN_ASSERT(result == -1);
Log(Status::Ok, "With odd sized array and custom compare");
}
if (1)
{
i64 array[] = {1, 2, 3, 4};
i64 result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 1);
DQN_ASSERT(result == 0);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 2);
DQN_ASSERT(result == 1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 3);
DQN_ASSERT(result == 2);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 4);
DQN_ASSERT(result == 3);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 5);
DQN_ASSERT(result == -1);
Log(Status::Ok, "With even sized array");
}
if (1)
{
i64 array[] = {1, 2, 3};
i64 result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 0, DqnBSearchType::MinusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 1, DqnBSearchType::MinusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 2, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 0);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 3, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 4, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 2);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 5, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 2);
Log(Status::Ok, "Lower bound with odd sized array");
}
if (1)
{
i64 array[] = {1, 2, 3, 4};
i64 result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 0, DqnBSearchType::MinusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 1, DqnBSearchType::MinusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 2, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 0);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 3, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 4, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 2);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 5, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 3);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 6, DqnBSearchType::MinusOne);
DQN_ASSERT(result == 3);
Log(Status::Ok, "Lower bound with even sized array");
}
if (1)
{
i64 array[] = {1, 2, 3};
i64 result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 0, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 0);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 1, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 2, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 2);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 3, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 4, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 5, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
Log(Status::Ok, "Higher bound with odd sized array");
}
if (1)
{
i64 array[] = {1, 2, 3, 4};
i64 result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 0, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 0);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 1, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 2, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 2);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 3, DqnBSearchType::PlusOne);
DQN_ASSERT(result == 3);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 4, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 5, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
result = DqnBSearch(array, DQN_ARRAY_COUNT(array), 6, DqnBSearchType::PlusOne);
DQN_ASSERT(result == -1);
Log(Status::Ok, "Higher bound with even sized array");
}
}
void DqnMemSet_Test()
{
LOG_HEADER();
auto rnd = DqnRndPCG();
const int NUM_TIMINGS = 5;
f64 timings[2][NUM_TIMINGS] = {};
f64 avgTimings[DQN_ARRAY_COUNT(timings)] = {};
void *buffers[DQN_ARRAY_COUNT(timings)] = {};
const i32 NUM_ITERATIONS = DQN_ARRAY_COUNT(timings[0]);
Log("Timings");
for (auto i = 0; i < NUM_ITERATIONS; i++)
{
i32 size = rnd.Range(DQN_MEGABYTE(16), DQN_MEGABYTE(32));
u8 value = (u8)rnd.Range(0, 255);
globalIndent++;
globalNewLine = false;
Log("%02d: ", i);
globalIndent--;
globalIndent--;
i32 timingsIndex = 0;
// DqnMem_Set
{
buffers[timingsIndex] = malloc(size); DQN_ASSERT(buffers[timingsIndex]);
f64 start = DqnTimer_NowInMs();
DqnMem_Set(buffers[timingsIndex], value, size);
f64 duration = DqnTimer_NowInMs() - start;
timings[timingsIndex++][i] = duration;
Log("DqnMem_Set: %5.3f vs ", duration);
}
// crt memset
{
buffers[timingsIndex] = malloc(size); DQN_ASSERT(buffers[timingsIndex]);
f64 start = DqnTimer_NowInMs();
memset(buffers[timingsIndex], value, size);
f64 duration = DqnTimer_NowInMs() - start;
timings[timingsIndex++][i] = duration;
Log("memset: %5.3f\n", duration);
}
globalIndent++;
globalNewLine = true;
for (auto testIndex = 0; testIndex < size; testIndex++)
{
DQN_ASSERT(((u8 *)buffers[0])[testIndex] == ((u8 *)buffers[1])[testIndex]);
}
for (usize bufferIndex = 0; bufferIndex < DQN_ARRAY_COUNT(buffers); bufferIndex++)
{
free(buffers[bufferIndex]);
}
}
for (usize timingsIndex = 0; timingsIndex < DQN_ARRAY_COUNT(timings); timingsIndex++)
{
f64 totalTime = 0;
for (auto iterationIndex = 0; iterationIndex < NUM_ITERATIONS; iterationIndex++)
{
totalTime += timings[timingsIndex][iterationIndex];
}
avgTimings[timingsIndex] = totalTime / (f64)NUM_ITERATIONS;
}
Log("Average Timings");
globalIndent++;
Log("DqnMem_Set: %f vs memset: %f\n", avgTimings[0], avgTimings[1]);
globalIndent--;
Log(Status::Ok, "MemSet");
}
struct RawBuf
{
char *buffer;
int len;
};
DQN_CATALOG_LOAD_PROC(CatalogRawLoad, RawBuf)
{
usize bufSize;
u8 *buf = DqnFile_ReadAll(file.str, &bufSize);
if (!buf)
return false;
data->buffer = reinterpret_cast<char *>(buf);
data->len = static_cast<int>(bufSize);
return true;
}
void DqnCatalog_Test()
{
LOG_HEADER();
DqnCatalog<RawBuf, CatalogRawLoad> catalog = {};
catalog.PollAssets();
DqnCatalogPath path = "DqnCatalog_TrackFile";
DqnFile_Delete(path.str);
// Initially write the file and check the catalog is able to open it up
{
char const writeBuf[] = "aaaa";
DqnFile_WriteAll(path.str, reinterpret_cast<u8 const *>(writeBuf), DQN_CHAR_COUNT(writeBuf));
RawBuf *buf = catalog.GetIfUpdated(path);
DQN_ASSERT(DqnMem_Cmp(buf->buffer, writeBuf, DQN_CHAR_COUNT(writeBuf)) == 0);
Log(Status::Ok, "Catalog finds and loads on demand new file");
}
// Update the file and check that the GetIfUpdated returns a non-nullptr (because the entry is updated)
{
PlatformSleep(1000);
char const writeBuf[] = "xxxx";
DqnFile_WriteAll(path.str, reinterpret_cast<u8 const *>(writeBuf), DQN_CHAR_COUNT(writeBuf));
RawBuf *buf = catalog.GetIfUpdated(path);
DQN_ASSERT(DqnMem_Cmp(buf->buffer, writeBuf, DQN_CHAR_COUNT(writeBuf)) == 0);
Log(Status::Ok, "Catalog finds updated file after subsequent write");
}
// Update the file and get the catalog to poll the entries and check it has been updated
{
PlatformSleep(1000);
char const writeBuf[] = "abcd";
DqnFile_WriteAll(path.str, reinterpret_cast<u8 const *>(writeBuf), DQN_CHAR_COUNT(writeBuf));
catalog.PollAssets();
RawBuf *buf = catalog.GetIfUpdated(path);
DQN_ASSERT(DqnMem_Cmp(buf->buffer, writeBuf, DQN_CHAR_COUNT(writeBuf)) == 0);
Log(Status::Ok, "Catalog finds updated file using the poll asset interface");
}
// Update the file and get the catalog to poll the entries and check it has been updated
{
catalog.Erase(path.str);
RawBuf *buf = catalog.Get(path);
DQN_ASSERT(buf == nullptr);
Log(Status::Ok, "Catalog erase removes file from catalog");
}
DqnFile_Delete(path.str);
}
int main(void)
{
globalIndent = 1;
globalNewLine = true;
DqnString_Test();
DqnMemStack_Test();
DqnChar_Test();
DqnRnd_Test();
DqnMath_Test();
DqnVX_Test();
DqnRect_Test();
DqnArray_Test();
DqnQuickSort_Test();
DqnHashTable_Test();
DqnBSearch_Test();
DqnMemSet_Test();
DqnFixedString_Test();
DqnJson_Test();
#ifdef DQN_PLATFORM_HEADER
DqnVHashTable_Test();
DqnOS_Test();
DqnFile_Test();
DqnCatalog_Test();
DqnTimer_Test();
DqnJobQueue_Test();
#endif
// Log("\nPress 'Enter' Key to Exit\n");
// getchar();
return 0;
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif