Dqn/Extra/dn_tests.cpp
2025-05-12 17:09:03 +10:00

2467 lines
103 KiB
C++

#if !defined(DN_UT_H)
#error dn_utest.h must be included before this
#endif
#if !defined(DN_UT_IMPLEMENTATION)
#error DN_UT_IMPLEMENTATION must be defined before dn_utest.h
#endif
#include <inttypes.h>
struct DN_TestsResult
{
bool passed;
int total_tests;
int total_good_tests;
};
enum DN_TestsPrint
{
DN_TestsPrint_No,
DN_TestsPrint_OnFailure,
DN_TestsPrint_Yes,
};
// NOTE: Taken from MSDN __cpuid example implementation
// https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex?view=msvc-170
#if defined(DN_PLATFORM_WIN32) && defined(DN_COMPILER_MSVC)
struct DN_RefImplCPUReport {
unsigned int nIds_ = 0;
unsigned int nExIds_ = 0;
char vendor_[0x20] = {};
int vendorSize_ = 0;
char brand_[0x40] = {};
int brandSize_ = 0;
bool isIntel_ = false;
bool isAMD_ = false;
uint32_t f_1_ECX_ = 0;
uint32_t f_1_EDX_ = 0;
uint32_t f_7_EBX_ = 0;
uint32_t f_7_ECX_ = 0;
uint32_t f_81_ECX_ = 0;
uint32_t f_81_EDX_ = 0;
int data_[400][4] = {};
size_t dataSize_ = 0;
int extdata_[400][4] = {};
size_t extdataSize_ = 0;
bool SSE3(void) const { return f_1_ECX_ & (1 << 0); }
bool PCLMULQDQ(void) const { return f_1_ECX_ & (1 << 1); }
bool MONITOR(void) const { return f_1_ECX_ & (1 << 3); }
bool SSSE3(void) const { return f_1_ECX_ & (1 << 9); }
bool FMA(void) const { return f_1_ECX_ & (1 << 12); }
bool CMPXCHG16B(void) const { return f_1_ECX_ & (1 << 13); }
bool SSE41(void) const { return f_1_ECX_ & (1 << 19); }
bool SSE42(void) const { return f_1_ECX_ & (1 << 20); }
bool MOVBE(void) const { return f_1_ECX_ & (1 << 22); }
bool POPCNT(void) const { return f_1_ECX_ & (1 << 23); }
bool AES(void) const { return f_1_ECX_ & (1 << 25); }
bool XSAVE(void) const { return f_1_ECX_ & (1 << 26); }
bool OSXSAVE(void) const { return f_1_ECX_ & (1 << 27); }
bool AVX(void) const { return f_1_ECX_ & (1 << 28); }
bool F16C(void) const { return f_1_ECX_ & (1 << 29); }
bool RDRAND(void) const { return f_1_ECX_ & (1 << 30); }
bool MSR(void) const { return f_1_EDX_ & (1 << 5); }
bool CX8(void) const { return f_1_EDX_ & (1 << 8); }
bool SEP(void) const { return f_1_EDX_ & (1 << 11); }
bool CMOV(void) const { return f_1_EDX_ & (1 << 15); }
bool CLFSH(void) const { return f_1_EDX_ & (1 << 19); }
bool MMX(void) const { return f_1_EDX_ & (1 << 23); }
bool FXSR(void) const { return f_1_EDX_ & (1 << 24); }
bool SSE(void) const { return f_1_EDX_ & (1 << 25); }
bool SSE2(void) const { return f_1_EDX_ & (1 << 26); }
bool FSGSBASE(void) const { return f_7_EBX_ & (1 << 0); }
bool BMI1(void) const { return f_7_EBX_ & (1 << 3); }
bool HLE(void) const { return isIntel_ && f_7_EBX_ & (1 << 4); }
bool AVX2(void) const { return f_7_EBX_ & (1 << 5); }
bool BMI2(void) const { return f_7_EBX_ & (1 << 8); }
bool ERMS(void) const { return f_7_EBX_ & (1 << 9); }
bool INVPCID(void) const { return f_7_EBX_ & (1 << 10); }
bool RTM(void) const { return isIntel_ && f_7_EBX_ & (1 << 11); }
bool AVX512F(void) const { return f_7_EBX_ & (1 << 16); }
bool RDSEED(void) const { return f_7_EBX_ & (1 << 18); }
bool ADX(void) const { return f_7_EBX_ & (1 << 19); }
bool AVX512PF(void) const { return f_7_EBX_ & (1 << 26); }
bool AVX512ER(void) const { return f_7_EBX_ & (1 << 27); }
bool AVX512CD(void) const { return f_7_EBX_ & (1 << 28); }
bool SHA(void) const { return f_7_EBX_ & (1 << 29); }
bool PREFETCHWT1(void) const { return f_7_ECX_ & (1 << 0); }
bool LAHF(void) const { return f_81_ECX_ & (1 << 0); }
bool LZCNT(void) const { return isIntel_ && f_81_ECX_ & (1 << 5); }
bool ABM(void) const { return isAMD_ && f_81_ECX_ & (1 << 5); }
bool SSE4a(void) const { return isAMD_ && f_81_ECX_ & (1 << 6); }
bool XOP(void) const { return isAMD_ && f_81_ECX_ & (1 << 11); }
bool TBM(void) const { return isAMD_ && f_81_ECX_ & (1 << 21); }
bool SYSCALL(void) const { return isIntel_ && f_81_EDX_ & (1 << 11); }
bool MMXEXT(void) const { return isAMD_ && f_81_EDX_ & (1 << 22); }
bool RDTSCP(void) const { return f_81_EDX_ & (1 << 27); }
bool _3DNOWEXT(void) const { return isAMD_ && f_81_EDX_ & (1 << 30); }
bool _3DNOW(void) const { return isAMD_ && f_81_EDX_ & (1 << 31); }
};
static DN_RefImplCPUReport DN_RefImplCPUReport_Init()
{
DN_RefImplCPUReport result = {};
// int cpuInfo[4] = {-1};
int cpui[4];
// Calling __cpuid with 0x0 as the function_id argument
// gets the number of the highest valid function ID.
__cpuid(cpui, 0);
result.nIds_ = cpui[0];
for (unsigned int i = 0; i <= result.nIds_; ++i) {
__cpuidex(cpui, i, 0);
memcpy(result.data_[result.dataSize_++], cpui, sizeof(cpui));
}
// Capture vendor string
*reinterpret_cast<int *>(result.vendor_) = result.data_[0][1];
*reinterpret_cast<int *>(result.vendor_ + 4) = result.data_[0][3];
*reinterpret_cast<int *>(result.vendor_ + 8) = result.data_[0][2];
result.vendorSize_ = (int)strlen(result.vendor_);
if (strcmp(result.vendor_, "GenuineIntel") == 0)
result.isIntel_ = true;
else if (strcmp(result.vendor_, "AuthenticAMD") == 0)
result.isAMD_ = true;
// load bitset with flags for function 0x00000001
if (result.nIds_ >= 1) {
result.f_1_ECX_ = result.data_[1][2];
result.f_1_EDX_ = result.data_[1][3];
}
// load bitset with flags for function 0x00000007
if (result.nIds_ >= 7) {
result.f_7_EBX_ = result.data_[7][1];
result.f_7_ECX_ = result.data_[7][2];
}
// Calling __cpuid with 0x80000000 as the function_id argument
// gets the number of the highest valid extended ID.
__cpuid(cpui, 0x80000000);
result.nExIds_ = cpui[0];
for (unsigned int i = 0x80000000; i <= result.nExIds_; ++i) {
__cpuidex(cpui, i, 0);
memcpy(result.extdata_[result.extdataSize_++], cpui, sizeof(cpui));
}
// load bitset with flags for function 0x80000001
if (result.nExIds_ >= 0x80000001) {
result.f_81_ECX_ = result.extdata_[1][2];
result.f_81_EDX_ = result.extdata_[1][3];
}
// Interpret CPU brand string if reported
if (result.nExIds_ >= 0x80000004) {
memcpy(result.brand_, result.extdata_[2], sizeof(cpui));
memcpy(result.brand_ + 16, result.extdata_[3], sizeof(cpui));
memcpy(result.brand_ + 32, result.extdata_[4], sizeof(cpui));
result.brandSize_ = (int)strlen(result.brand_);
}
return result;
}
#if 0
static void DN_RefImpl_CPUReportDump() // Print out supported instruction set features
{
auto support_message = [](std::string isa_feature, bool is_supported) {
printf("%s %s\n", isa_feature.c_str(), is_supported ? "supported" : "not supported");
};
printf("%s\n", DN_RefImplCPUReport::Vendor().c_str());
printf("%s\n", DN_RefImplCPUReport::Brand().c_str());
support_message("3DNOW", DN_RefImplCPUReport::_3DNOW());
support_message("3DNOWEXT", DN_RefImplCPUReport::_3DNOWEXT());
support_message("ABM", DN_RefImplCPUReport::ABM());
support_message("ADX", DN_RefImplCPUReport::ADX());
support_message("AES", DN_RefImplCPUReport::AES());
support_message("AVX", DN_RefImplCPUReport::AVX());
support_message("AVX2", DN_RefImplCPUReport::AVX2());
support_message("AVX512CD", DN_RefImplCPUReport::AVX512CD());
support_message("AVX512ER", DN_RefImplCPUReport::AVX512ER());
support_message("AVX512F", DN_RefImplCPUReport::AVX512F());
support_message("AVX512PF", DN_RefImplCPUReport::AVX512PF());
support_message("BMI1", DN_RefImplCPUReport::BMI1());
support_message("BMI2", DN_RefImplCPUReport::BMI2());
support_message("CLFSH", DN_RefImplCPUReport::CLFSH());
support_message("CMPXCHG16B", DN_RefImplCPUReport::CMPXCHG16B());
support_message("CX8", DN_RefImplCPUReport::CX8());
support_message("ERMS", DN_RefImplCPUReport::ERMS());
support_message("F16C", DN_RefImplCPUReport::F16C());
support_message("FMA", DN_RefImplCPUReport::FMA());
support_message("FSGSBASE", DN_RefImplCPUReport::FSGSBASE());
support_message("FXSR", DN_RefImplCPUReport::FXSR());
support_message("HLE", DN_RefImplCPUReport::HLE());
support_message("INVPCID", DN_RefImplCPUReport::INVPCID());
support_message("LAHF", DN_RefImplCPUReport::LAHF());
support_message("LZCNT", DN_RefImplCPUReport::LZCNT());
support_message("MMX", DN_RefImplCPUReport::MMX());
support_message("MMXEXT", DN_RefImplCPUReport::MMXEXT());
support_message("MONITOR", DN_RefImplCPUReport::MONITOR());
support_message("MOVBE", DN_RefImplCPUReport::MOVBE());
support_message("MSR", DN_RefImplCPUReport::MSR());
support_message("OSXSAVE", DN_RefImplCPUReport::OSXSAVE());
support_message("PCLMULQDQ", DN_RefImplCPUReport::PCLMULQDQ());
support_message("POPCNT", DN_RefImplCPUReport::POPCNT());
support_message("PREFETCHWT1", DN_RefImplCPUReport::PREFETCHWT1());
support_message("RDRAND", DN_RefImplCPUReport::RDRAND());
support_message("RDSEED", DN_RefImplCPUReport::RDSEED());
support_message("RDTSCP", DN_RefImplCPUReport::RDTSCP());
support_message("RTM", DN_RefImplCPUReport::RTM());
support_message("SEP", DN_RefImplCPUReport::SEP());
support_message("SHA", DN_RefImplCPUReport::SHA());
support_message("SSE", DN_RefImplCPUReport::SSE());
support_message("SSE2", DN_RefImplCPUReport::SSE2());
support_message("SSE3", DN_RefImplCPUReport::SSE3());
support_message("SSE4.1", DN_RefImplCPUReport::SSE41());
support_message("SSE4.2", DN_RefImplCPUReport::SSE42());
support_message("SSE4a", DN_RefImplCPUReport::SSE4a());
support_message("SSSE3", DN_RefImplCPUReport::SSSE3());
support_message("SYSCALL", DN_RefImplCPUReport::SYSCALL());
support_message("TBM", DN_RefImplCPUReport::TBM());
support_message("XOP", DN_RefImplCPUReport::XOP());
support_message("XSAVE", DN_RefImplCPUReport::XSAVE());
};
#endif
#endif // defined(DN_PLATFORM_WIN32) && defined(DN_COMPILER_MSVC)
static DN_UTCore DN_Tests_Base()
{
DN_UTCore result = DN_UT_Init();
#if defined(DN_PLATFORM_WIN32) && defined(DN_COMPILER_MSVC)
DN_RefImplCPUReport ref_cpu_report = DN_RefImplCPUReport_Init();
DN_UT_LogF(&result, "DN_Base\n");
{
DN_UT_Test(&result, "Query CPUID")
{
DN_CPUReport cpu_report = DN_CPU_Report();
// NOTE: Sanity check our report against MSDN's example ////////////////////////////////////////
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_3DNow) == ref_cpu_report._3DNOW());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_3DNowExt) == ref_cpu_report._3DNOWEXT());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_ABM) == ref_cpu_report.ABM());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AES) == ref_cpu_report.AES());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX) == ref_cpu_report.AVX());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX2) == ref_cpu_report.AVX2());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX512CD) == ref_cpu_report.AVX512CD());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX512ER) == ref_cpu_report.AVX512ER());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX512F) == ref_cpu_report.AVX512F());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_AVX512PF) == ref_cpu_report.AVX512PF());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_CMPXCHG16B) == ref_cpu_report.CMPXCHG16B());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_F16C) == ref_cpu_report.F16C());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_FMA) == ref_cpu_report.FMA());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_MMX) == ref_cpu_report.MMX());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_MmxExt) == ref_cpu_report.MMXEXT());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_MONITOR) == ref_cpu_report.MONITOR());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_MOVBE) == ref_cpu_report.MOVBE());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_PCLMULQDQ) == ref_cpu_report.PCLMULQDQ());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_POPCNT) == ref_cpu_report.POPCNT());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_RDRAND) == ref_cpu_report.RDRAND());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_RDSEED) == ref_cpu_report.RDSEED());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_RDTSCP) == ref_cpu_report.RDTSCP());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SHA) == ref_cpu_report.SHA());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE) == ref_cpu_report.SSE());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE2) == ref_cpu_report.SSE2());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE3) == ref_cpu_report.SSE3());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE41) == ref_cpu_report.SSE41());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE42) == ref_cpu_report.SSE42());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSE4A) == ref_cpu_report.SSE4a());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SSSE3) == ref_cpu_report.SSSE3());
// NOTE: Feature flags we haven't bothered detecting yet but are in MSDN's example /////////////
#if 0
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_ADX) == DN_RefImplCPUReport::ADX());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_BMI1) == DN_RefImplCPUReport::BMI1());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_BMI2) == DN_RefImplCPUReport::BMI2());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_CLFSH) == DN_RefImplCPUReport::CLFSH());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_CX8) == DN_RefImplCPUReport::CX8());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_ERMS) == DN_RefImplCPUReport::ERMS());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_FSGSBASE) == DN_RefImplCPUReport::FSGSBASE());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_FXSR) == DN_RefImplCPUReport::FXSR());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_HLE) == DN_RefImplCPUReport::HLE());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_INVPCID) == DN_RefImplCPUReport::INVPCID());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_LAHF) == DN_RefImplCPUReport::LAHF());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_LZCNT) == DN_RefImplCPUReport::LZCNT());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_MSR) == DN_RefImplCPUReport::MSR());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_OSXSAVE) == DN_RefImplCPUReport::OSXSAVE());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_PREFETCHWT1) == DN_RefImplCPUReport::PREFETCHWT1());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_RTM) == DN_RefImplCPUReport::RTM());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SEP) == DN_RefImplCPUReport::SEP());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_SYSCALL) == DN_RefImplCPUReport::SYSCALL());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_TBM) == DN_RefImplCPUReport::TBM());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_XOP) == DN_RefImplCPUReport::XOP());
DN_UT_Assert(&result, DN_CPU_HasFeature(&cpu_report, DN_CPUFeature_XSAVE) == DN_RefImplCPUReport::XSAVE());
#endif
}
}
#endif // defined(DN_PLATFORM_WIN32) && defined(DN_COMPILER_MSVC)
return result;
}
static DN_UTCore DN_Tests_Arena()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_Arena\n");
{
DN_UT_Test(&result, "Reused memory is zeroed out")
{
uint8_t alignment = 1;
DN_USize alloc_size = DN_Kilobytes(128);
DN_Arena arena = DN_Arena_InitFromOSVMem(0, 0, DN_ArenaFlags_Nil);
DN_DEFER
{
DN_Arena_Deinit(&arena);
};
// NOTE: Allocate 128 kilobytes, fill it with garbage, then reset the arena
uintptr_t first_ptr_address = 0;
{
DN_ArenaTempMem temp_mem = DN_Arena_TempMemBegin(&arena);
void *ptr = DN_Arena_Alloc(&arena, alloc_size, alignment, DN_ZeroMem_Yes);
first_ptr_address = DN_CAST(uintptr_t) ptr;
DN_Memset(ptr, 'z', alloc_size);
DN_Arena_TempMemEnd(temp_mem);
}
// NOTE: Reallocate 128 kilobytes
char *ptr = DN_CAST(char *) DN_Arena_Alloc(&arena, alloc_size, alignment, DN_ZeroMem_Yes);
// NOTE: Double check we got the same pointer
DN_UT_Assert(&result, first_ptr_address == DN_CAST(uintptr_t) ptr);
// NOTE: Check that the bytes are set to 0
for (DN_USize i = 0; i < alloc_size; i++)
DN_UT_Assert(&result, ptr[i] == 0);
}
DN_UT_Test(&result, "Test arena grows naturally, 1mb + 4mb")
{
// NOTE: Allocate 1mb, then 4mb, this should force the arena to grow
DN_Arena arena = DN_Arena_InitFromOSVMem(DN_Megabytes(2), DN_Megabytes(2), DN_ArenaFlags_Nil);
DN_DEFER
{
DN_Arena_Deinit(&arena);
};
char *ptr_1mb = DN_Arena_NewArray(&arena, char, DN_Megabytes(1), DN_ZeroMem_Yes);
char *ptr_4mb = DN_Arena_NewArray(&arena, char, DN_Megabytes(4), DN_ZeroMem_Yes);
DN_UT_Assert(&result, ptr_1mb);
DN_UT_Assert(&result, ptr_4mb);
DN_ArenaBlock const *block_4mb_begin = arena.curr;
char const *block_4mb_end = DN_CAST(char *) block_4mb_begin + block_4mb_begin->reserve;
DN_ArenaBlock const *block_1mb_begin = block_4mb_begin->prev;
DN_UT_AssertF(&result, block_1mb_begin, "New block should have been allocated");
char const *block_1mb_end = DN_CAST(char *) block_1mb_begin + block_1mb_begin->reserve;
DN_UT_AssertF(&result, block_1mb_begin != block_4mb_begin, "New block should have been allocated and linked");
DN_UT_AssertF(&result, ptr_1mb >= DN_CAST(char *) block_1mb_begin && ptr_1mb <= block_1mb_end, "Pointer was not allocated from correct memory block");
DN_UT_AssertF(&result, ptr_4mb >= DN_CAST(char *) block_4mb_begin && ptr_4mb <= block_4mb_end, "Pointer was not allocated from correct memory block");
}
DN_UT_Test(&result, "Test arena grows naturally, 1mb, temp memory 4mb")
{
DN_Arena arena = DN_Arena_InitFromOSVMem(DN_Megabytes(2), DN_Megabytes(2), DN_ArenaFlags_Nil);
DN_DEFER
{
DN_Arena_Deinit(&arena);
};
// NOTE: Allocate 1mb, then 4mb, this should force the arena to grow
char *ptr_1mb = DN_CAST(char *) DN_Arena_Alloc(&arena, DN_Megabytes(1), 1 /*align*/, DN_ZeroMem_Yes);
DN_UT_Assert(&result, ptr_1mb);
DN_ArenaTempMem temp_memory = DN_Arena_TempMemBegin(&arena);
{
char *ptr_4mb = DN_Arena_NewArray(&arena, char, DN_Megabytes(4), DN_ZeroMem_Yes);
DN_UT_Assert(&result, ptr_4mb);
DN_ArenaBlock const *block_4mb_begin = arena.curr;
char const *block_4mb_end = DN_CAST(char *) block_4mb_begin + block_4mb_begin->reserve;
DN_ArenaBlock const *block_1mb_begin = block_4mb_begin->prev;
char const *block_1mb_end = DN_CAST(char *) block_1mb_begin + block_1mb_begin->reserve;
DN_UT_AssertF(&result, block_1mb_begin != block_4mb_begin, "New block should have been allocated and linked");
DN_UT_AssertF(&result, ptr_1mb >= DN_CAST(char *) block_1mb_begin && ptr_1mb <= block_1mb_end, "Pointer was not allocated from correct memory block");
DN_UT_AssertF(&result, ptr_4mb >= DN_CAST(char *) block_4mb_begin && ptr_4mb <= block_4mb_end, "Pointer was not allocated from correct memory block");
}
DN_Arena_TempMemEnd(temp_memory);
DN_UT_Assert(&result, arena.curr->prev == nullptr);
DN_UT_AssertF(&result,
arena.curr->reserve >= DN_Megabytes(1),
"size=%" PRIu64 "MiB (%" PRIu64 "B), expect=%" PRIu64 "B",
(arena.curr->reserve / 1024 / 1024),
arena.curr->reserve,
DN_Megabytes(1));
}
}
return result;
}
static DN_UTCore DN_Tests_Bin()
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_UTCore test = DN_UT_Init();
DN_UT_LogF(&test, "DN_Bin\n");
{
DN_UT_Test(&test, "Convert 0x123")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("0x123"));
DN_UT_AssertF(&test, result == 0x123, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert 0xFFFF")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("0xFFFF"));
DN_UT_AssertF(&test, result == 0xFFFF, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert FFFF")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("FFFF"));
DN_UT_AssertF(&test, result == 0xFFFF, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert abCD")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("abCD"));
DN_UT_AssertF(&test, result == 0xabCD, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert 0xabCD")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("0xabCD"));
DN_UT_AssertF(&test, result == 0xabCD, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert 0x")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("0x"));
DN_UT_AssertF(&test, result == 0x0, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert 0X")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("0X"));
DN_UT_AssertF(&test, result == 0x0, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert 3")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("3"));
DN_UT_AssertF(&test, result == 3, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert f")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("f"));
DN_UT_AssertF(&test, result == 0xf, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert g")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("g"));
DN_UT_AssertF(&test, result == 0, "result: %" PRIu64, result);
}
DN_UT_Test(&test, "Convert -0x3")
{
uint64_t result = DN_CVT_HexToU64(DN_STR8("-0x3"));
DN_UT_AssertF(&test, result == 0, "result: %" PRIu64, result);
}
uint32_t number = 0xd095f6;
DN_UT_Test(&test, "Convert %x to string", number)
{
DN_Str8 number_hex = DN_CVT_BytesToHex(tmem.arena, &number, sizeof(number));
DN_UT_AssertF(&test, DN_Str8_Eq(number_hex, DN_STR8("f695d000")), "number_hex=%.*s", DN_STR_FMT(number_hex));
}
number = 0xf6ed00;
DN_UT_Test(&test, "Convert %x to string", number)
{
DN_Str8 number_hex = DN_CVT_BytesToHex(tmem.arena, &number, sizeof(number));
DN_UT_AssertF(&test, DN_Str8_Eq(number_hex, DN_STR8("00edf600")), "number_hex=%.*s", DN_STR_FMT(number_hex));
}
DN_Str8 hex = DN_STR8("0xf6ed00");
DN_UT_Test(&test, "Convert %.*s to bytes", DN_STR_FMT(hex))
{
DN_Str8 bytes = DN_CVT_HexToBytes(tmem.arena, hex);
DN_UT_AssertF(&test,
DN_Str8_Eq(bytes, DN_STR8("\xf6\xed\x00")),
"number_hex=%.*s",
DN_STR_FMT(DN_CVT_BytesToHex(tmem.arena, bytes.data, bytes.size)));
}
}
return test;
}
static DN_UTCore DN_Tests_BinarySearch()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_BinarySearch\n");
{
DN_UT_Test(&result, "Search array of 1 item")
{
uint32_t array[] = {1};
DN_BinarySearchResult search = {};
// NOTE: Match =============================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
// NOTE: Lower bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
// NOTE: Upper bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
}
DN_UT_Test(&result, "Search array of 2 items")
{
uint32_t array[] = {1};
DN_BinarySearchResult search = {};
// NOTE: Match =============================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
// NOTE: Lower bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
// NOTE: Upper bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 1);
}
DN_UT_Test(&result, "Search array of 3 items")
{
uint32_t array[] = {1, 2, 3};
DN_BinarySearchResult search = {};
// NOTE: Match =============================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 3);
// NOTE: Lower bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 3);
// NOTE: Upper bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 3);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 3);
}
DN_UT_Test(&result, "Search array of 4 items")
{
uint32_t array[] = {1, 2, 3, 4};
DN_BinarySearchResult search = {};
// NOTE: Match =============================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 3);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 5U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 4);
// NOTE: Lower bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 3);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 5U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 4);
// NOTE: Upper bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 1);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 3);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 4);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 5U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 4);
}
DN_UT_Test(&result, "Search array with duplicate items")
{
uint32_t array[] = {1, 1, 2, 2, 3};
DN_BinarySearchResult search = {};
// NOTE: Match =============================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 4);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_Match);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 5);
// NOTE: Lower bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 4);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 4U /*find*/, DN_BinarySearchType_LowerBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 5);
// NOTE: Upper bound =======================================================================
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 0U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 0);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 1U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 2);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 2U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, search.found);
DN_UT_Assert(&result, search.index == 4);
search = DN_BinarySearch<uint32_t>(array, DN_ArrayCountU(array), 3U /*find*/, DN_BinarySearchType_UpperBound);
DN_UT_Assert(&result, !search.found);
DN_UT_Assert(&result, search.index == 5);
}
}
return result;
}
static DN_UTCore DN_Tests_DSMap()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_DSMap\n");
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
{
DN_Arena arena = DN_Arena_InitFromOSVMem(0, 0, DN_ArenaFlags_Nil);
uint32_t const MAP_SIZE = 64;
DN_DSMap<uint64_t> map = DN_DSMap_Init<uint64_t>(&arena, MAP_SIZE, DN_DSMapFlags_Nil);
DN_DEFER
{
DN_DSMap_Deinit(&map, DN_ZeroMem_Yes);
};
DN_UT_Test(&result, "Find non-existent value")
{
DN_DSMapResult<uint64_t> find = DN_DSMap_FindKeyStr8(&map, DN_STR8("Foo"));
DN_UT_Assert(&result, !find.found);
DN_UT_Assert(&result, map.size == MAP_SIZE);
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.occupied == 1 /*Sentinel*/);
}
DN_DSMapKey key = DN_DSMap_KeyCStr8(&map, "Bar");
DN_UT_Test(&result, "Insert value and lookup")
{
uint64_t desired_value = 0xF00BAA;
uint64_t *slot_value = DN_DSMap_Set(&map, key, desired_value).value;
DN_UT_Assert(&result, slot_value);
DN_UT_Assert(&result, map.size == MAP_SIZE);
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.occupied == 2);
uint64_t *value = DN_DSMap_Find(&map, key).value;
DN_UT_Assert(&result, value);
DN_UT_Assert(&result, *value == desired_value);
}
DN_UT_Test(&result, "Remove key")
{
DN_DSMap_Erase(&map, key);
DN_UT_Assert(&result, map.size == MAP_SIZE);
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.occupied == 1 /*Sentinel*/);
}
}
enum DSMapTestType
{
DSMapTestType_Set,
DSMapTestType_MakeSlot,
DSMapTestType_Count
};
for (int result_type = 0; result_type < DSMapTestType_Count; result_type++) {
DN_Str8 prefix = {};
switch (result_type) {
case DSMapTestType_Set: prefix = DN_STR8("Set"); break;
case DSMapTestType_MakeSlot: prefix = DN_STR8("Make slot"); break;
}
DN_ArenaTempMemScope temp_mem_scope = DN_ArenaTempMemScope(tmem.arena);
DN_Arena arena = DN_Arena_InitFromOSVMem(0, 0, DN_ArenaFlags_Nil);
uint32_t const MAP_SIZE = 64;
DN_DSMap<uint64_t> map = DN_DSMap_Init<uint64_t>(&arena, MAP_SIZE, DN_DSMapFlags_Nil);
DN_DEFER
{
DN_DSMap_Deinit(&map, DN_ZeroMem_Yes);
};
DN_UT_Test(&result, "%.*s: Test growing", DN_STR_FMT(prefix))
{
uint64_t map_start_size = map.size;
uint64_t value = 0;
uint64_t grow_threshold = map_start_size * 3 / 4;
for (; map.occupied != grow_threshold; value++) {
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value);
DN_UT_Assert(&result, !DN_DSMap_Find<uint64_t>(&map, key).found);
DN_DSMapResult<uint64_t> make_result = {};
if (result_type == DSMapTestType_Set)
make_result = DN_DSMap_Set(&map, key, value);
else
make_result = DN_DSMap_Make(&map, key);
DN_UT_Assert(&result, !make_result.found);
DN_UT_Assert(&result, DN_DSMap_Find<uint64_t>(&map, key).value);
}
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.size == map_start_size);
DN_UT_Assert(&result, map.occupied == 1 /*Sentinel*/ + value);
{ // NOTE: One more item should cause the table to grow by 2x
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value);
DN_DSMapResult<uint64_t> make_result = {};
if (result_type == DSMapTestType_Set)
make_result = DN_DSMap_Set(&map, key, value);
else
make_result = DN_DSMap_Make(&map, key);
value++;
DN_UT_Assert(&result, !make_result.found);
DN_UT_Assert(&result, map.size == map_start_size * 2);
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.occupied == 1 /*Sentinel*/ + value);
}
}
DN_UT_Test(&result, "%.*s: Check the sentinel is present", DN_STR_FMT(prefix))
{
DN_DSMapSlot<uint64_t> NIL_SLOT = {};
DN_DSMapSlot<uint64_t> sentinel = map.slots[DN_DS_MAP_SENTINEL_SLOT];
DN_UT_Assert(&result, DN_Memcmp(&sentinel, &NIL_SLOT, sizeof(NIL_SLOT)) == 0);
}
DN_UT_Test(&result, "%.*s: Recheck all the hash tables values after growing", DN_STR_FMT(prefix))
{
for (uint64_t index = 1 /*Sentinel*/; index < map.occupied; index++) {
DN_DSMapSlot<uint64_t> const *slot = map.slots + index;
// NOTE: Validate each slot value
uint64_t value_result = index - 1;
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value_result);
DN_UT_Assert(&result, DN_DSMap_KeyEquals(slot->key, key));
if (result_type == DSMapTestType_Set)
DN_UT_Assert(&result, slot->value == value_result);
else
DN_UT_Assert(&result, slot->value == 0); // NOTE: Make slot does not set the key so should be 0
DN_UT_Assert(&result, slot->key.hash == DN_DSMap_Hash(&map, slot->key));
// NOTE: Check the reverse lookup is correct
DN_DSMapResult<uint64_t> check = DN_DSMap_Find(&map, slot->key);
DN_UT_Assert(&result, slot->value == *check.value);
}
}
DN_UT_Test(&result, "%.*s: Test shrinking", DN_STR_FMT(prefix))
{
uint64_t start_map_size = map.size;
uint64_t start_map_occupied = map.occupied;
uint64_t value = 0;
uint64_t shrink_threshold = map.size * 1 / 4;
for (; map.occupied != shrink_threshold; value++) {
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value);
DN_UT_Assert(&result, DN_DSMap_Find<uint64_t>(&map, key).found);
DN_DSMap_Erase(&map, key);
DN_UT_Assert(&result, !DN_DSMap_Find<uint64_t>(&map, key).found);
}
DN_UT_Assert(&result, map.size == start_map_size);
DN_UT_Assert(&result, map.occupied == start_map_occupied - value);
{ // NOTE: One more item should cause the table to shrink by 2x
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value);
DN_DSMap_Erase(&map, key);
value++;
DN_UT_Assert(&result, map.size == start_map_size / 2);
DN_UT_Assert(&result, map.occupied == start_map_occupied - value);
}
{ // NOTE: Check the sentinel is present
DN_DSMapSlot<uint64_t> NIL_SLOT = {};
DN_DSMapSlot<uint64_t> sentinel = map.slots[DN_DS_MAP_SENTINEL_SLOT];
DN_UT_Assert(&result, DN_Memcmp(&sentinel, &NIL_SLOT, sizeof(NIL_SLOT)) == 0);
}
// NOTE: Recheck all the hash table values after shrinking
for (uint64_t index = 1 /*Sentinel*/; index < map.occupied; index++) {
// NOTE: Generate the key
uint64_t value_result = value + (index - 1);
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value_result);
// NOTE: Validate each slot value
DN_DSMapResult<uint64_t> find_result = DN_DSMap_Find(&map, key);
DN_UT_Assert(&result, find_result.value);
DN_UT_Assert(&result, find_result.slot->key == key);
if (result_type == DSMapTestType_Set)
DN_UT_Assert(&result, *find_result.value == value_result);
else
DN_UT_Assert(&result, *find_result.value == 0); // NOTE: Make slot does not set the key so should be 0
DN_UT_Assert(&result, find_result.slot->key.hash == DN_DSMap_Hash(&map, find_result.slot->key));
// NOTE: Check the reverse lookup is correct
DN_DSMapResult<uint64_t> check = DN_DSMap_Find(&map, find_result.slot->key);
DN_UT_Assert(&result, *find_result.value == *check.value);
}
for (; map.occupied != 1; value++) { // NOTE: Remove all items from the table
DN_DSMapKey key = DN_DSMap_KeyU64(&map, value);
DN_UT_Assert(&result, DN_DSMap_Find<uint64_t>(&map, key).found);
DN_DSMap_Erase(&map, key);
DN_UT_Assert(&result, !DN_DSMap_Find<uint64_t>(&map, key).found);
}
DN_UT_Assert(&result, map.initial_size == MAP_SIZE);
DN_UT_Assert(&result, map.size == map.initial_size);
DN_UT_Assert(&result, map.occupied == 1 /*Sentinel*/);
}
}
}
return result;
}
static DN_UTCore DN_Tests_FStr8()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_FStr8\n");
{
DN_UT_Test(&result, "Append too much fails")
{
DN_FStr8<4> str = {};
DN_UT_Assert(&result, !DN_FStr8_Add(&str, DN_STR8("abcde")));
}
DN_UT_Test(&result, "Append format string too much fails")
{
DN_FStr8<4> str = {};
DN_UT_Assert(&result, !DN_FStr8_AddF(&str, "abcde"));
}
}
return result;
}
static DN_UTCore DN_Tests_FArray()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_FArray\n");
{
DN_UT_Test(&result, "Initialise from raw array")
{
int raw_array[] = {1, 2};
auto array = DN_FArray_Init<int, 4>(raw_array, DN_ArrayCountU(raw_array));
DN_UT_Assert(&result, array.size == 2);
DN_UT_Assert(&result, array.data[0] == 1);
DN_UT_Assert(&result, array.data[1] == 2);
}
DN_UT_Test(&result, "Erase stable 1 element from array")
{
int raw_array[] = {1, 2, 3};
auto array = DN_FArray_Init<int, 4>(raw_array, DN_ArrayCountU(raw_array));
DN_FArray_EraseRange(&array, 1 /*begin_index*/, 1 /*count*/, DN_ArrayErase_Stable);
DN_UT_Assert(&result, array.size == 2);
DN_UT_Assert(&result, array.data[0] == 1);
DN_UT_Assert(&result, array.data[1] == 3);
}
DN_UT_Test(&result, "Erase unstable 1 element from array")
{
int raw_array[] = {1, 2, 3};
auto array = DN_FArray_Init<int, 4>(raw_array, DN_ArrayCountU(raw_array));
DN_FArray_EraseRange(&array, 0 /*begin_index*/, 1 /*count*/, DN_ArrayErase_Unstable);
DN_UT_Assert(&result, array.size == 2);
DN_UT_Assert(&result, array.data[0] == 3);
DN_UT_Assert(&result, array.data[1] == 2);
}
DN_UT_Test(&result, "Add 1 element to array")
{
int const ITEM = 2;
int raw_array[] = {1};
auto array = DN_FArray_Init<int, 4>(raw_array, DN_ArrayCountU(raw_array));
DN_FArray_Add(&array, ITEM);
DN_UT_Assert(&result, array.size == 2);
DN_UT_Assert(&result, array.data[0] == 1);
DN_UT_Assert(&result, array.data[1] == ITEM);
}
DN_UT_Test(&result, "Clear array")
{
int raw_array[] = {1};
auto array = DN_FArray_Init<int, 4>(raw_array, DN_ArrayCountU(raw_array));
DN_FArray_Clear(&array);
DN_UT_Assert(&result, array.size == 0);
}
}
return result;
}
static DN_UTCore DN_Tests_Intrinsics()
{
DN_UTCore result = DN_UT_Init();
// TODO(dn): We don't have meaningful results here, but since
// atomics/intrinsics are implemented using macros we ensure the macro was
// written properly with these results.
DN_MSVC_WARNING_PUSH
// NOTE: MSVC SAL complains that we are using Interlocked functionality on
// variables it has detected as *not* being shared across threads. This is
// fine, we're just running some basic results, so permit it.
//
// Warning 28112 is a knock-on effect of this that it doesn't like us
// reading the value of the variable that has been used in an Interlocked
// function locally.
DN_MSVC_WARNING_DISABLE(28113) // Accessing a local variable val via an Interlocked function.
DN_MSVC_WARNING_DISABLE(28112) // A variable (val) which is accessed via an Interlocked function must always be accessed via an Interlocked function. See line 759.
DN_UT_LogF(&result, "DN_Atomic\n");
{
DN_UT_Test(&result, "DN_Atomic_AddU32")
{
uint32_t val = 0;
DN_Atomic_AddU32(&val, 1);
DN_UT_AssertF(&result, val == 1, "val: %u", val);
}
DN_UT_Test(&result, "DN_Atomic_AddU64")
{
uint64_t val = 0;
DN_Atomic_AddU64(&val, 1);
DN_UT_AssertF(&result, val == 1, "val: %" PRIu64, val);
}
DN_UT_Test(&result, "DN_Atomic_SubU32")
{
uint32_t val = 1;
DN_Atomic_SubU32(&val, 1);
DN_UT_AssertF(&result, val == 0, "val: %u", val);
}
DN_UT_Test(&result, "DN_Atomic_SubU64")
{
uint64_t val = 1;
DN_Atomic_SubU64(&val, 1);
DN_UT_AssertF(&result, val == 0, "val: %" PRIu64, val);
}
DN_UT_Test(&result, "DN_Atomic_SetValue32")
{
long a = 0;
long b = 111;
DN_Atomic_SetValue32(&a, b);
DN_UT_AssertF(&result, a == b, "a: %ld, b: %ld", a, b);
}
DN_UT_Test(&result, "DN_Atomic_SetValue64")
{
int64_t a = 0;
int64_t b = 111;
DN_Atomic_SetValue64(DN_CAST(uint64_t *) & a, b);
DN_UT_AssertF(&result, a == b, "a: %" PRId64 ", b: %" PRId64, a, b);
}
DN_UT_BeginF(&result, "DN_CPU_TSC");
DN_CPU_TSC();
DN_UT_End(&result);
DN_UT_BeginF(&result, "DN_CompilerReadBarrierAndCPUReadFence");
DN_CompilerReadBarrierAndCPUReadFence;
DN_UT_End(&result);
DN_UT_BeginF(&result, "DN_CompilerWriteBarrierAndCPUWriteFence");
DN_CompilerWriteBarrierAndCPUWriteFence;
DN_UT_End(&result);
}
DN_MSVC_WARNING_POP
return result;
}
#if defined(DN_UNIT_TESTS_WITH_KECCAK)
DN_GCC_WARNING_PUSH
DN_GCC_WARNING_DISABLE(-Wunused-parameter)
DN_GCC_WARNING_DISABLE(-Wsign-compare)
DN_MSVC_WARNING_PUSH
DN_MSVC_WARNING_DISABLE(4244)
DN_MSVC_WARNING_DISABLE(4100)
DN_MSVC_WARNING_DISABLE(6385)
// NOTE: Keccak Reference Implementation ///////////////////////////////////////////////////////////
// A very compact Keccak implementation taken from the reference implementation
// repository
//
// https://github.com/XKCP/XKCP/blob/master/Standalone/CompactFIPS202/C/Keccak-more-compact.c
#define FOR(i, n) for (i = 0; i < n; ++i)
void DN_RefImpl_Keccak_(int r, int c, const uint8_t *in, uint64_t inLen, uint8_t sfx, uint8_t *out, uint64_t outLen);
void DN_RefImpl_FIPS202_SHAKE128_(const uint8_t *in, uint64_t inLen, uint8_t *out, uint64_t outLen)
{
DN_RefImpl_Keccak_(1344, 256, in, inLen, 0x1F, out, outLen);
}
void DN_RefImpl_FIPS202_SHAKE256_(const uint8_t *in, uint64_t inLen, uint8_t *out, uint64_t outLen)
{
DN_RefImpl_Keccak_(1088, 512, in, inLen, 0x1F, out, outLen);
}
void DN_RefImpl_FIPS202_SHA3_224_(const uint8_t *in, uint64_t inLen, uint8_t *out)
{
DN_RefImpl_Keccak_(1152, 448, in, inLen, 0x06, out, 28);
}
void DN_RefImpl_FIPS202_SHA3_256_(const uint8_t *in, uint64_t inLen, uint8_t *out)
{
DN_RefImpl_Keccak_(1088, 512, in, inLen, 0x06, out, 32);
}
void DN_RefImpl_FIPS202_SHA3_384_(const uint8_t *in, uint64_t inLen, uint8_t *out)
{
DN_RefImpl_Keccak_(832, 768, in, inLen, 0x06, out, 48);
}
void DN_RefImpl_FIPS202_SHA3_512_(const uint8_t *in, uint64_t inLen, uint8_t *out)
{
DN_RefImpl_Keccak_(576, 1024, in, inLen, 0x06, out, 64);
}
int DN_RefImpl_LFSR86540_(uint8_t *R)
{
(*R) = ((*R) << 1) ^ (((*R) & 0x80) ? 0x71 : 0);
return ((*R) & 2) >> 1;
}
#define ROL(a, o) ((((uint64_t)a) << o) ^ (((uint64_t)a) >> (64 - o)))
static uint64_t DN_RefImpl_load64_(const uint8_t *x)
{
int i;
uint64_t u = 0;
FOR(i, 8)
{
u <<= 8;
u |= x[7 - i];
}
return u;
}
static void DN_RefImpl_store64_(uint8_t *x, uint64_t u)
{
int i;
FOR(i, 8)
{
x[i] = u;
u >>= 8;
}
}
static void DN_RefImpl_xor64_(uint8_t *x, uint64_t u)
{
int i;
FOR(i, 8)
{
x[i] ^= u;
u >>= 8;
}
}
#define rL(x, y) DN_RefImpl_load64_((uint8_t *)s + 8 * (x + 5 * y))
#define wL(x, y, l) DN_RefImpl_store64_((uint8_t *)s + 8 * (x + 5 * y), l)
#define XL(x, y, l) DN_RefImpl_xor64_((uint8_t *)s + 8 * (x + 5 * y), l)
void DN_RefImpl_Keccak_F1600(void *s)
{
int r, x, y, i, j, Y;
uint8_t R = 0x01;
uint64_t C[5], D;
for (i = 0; i < 24; i++) {
/*??*/ FOR(x, 5) C[x] = rL(x, 0) ^ rL(x, 1) ^ rL(x, 2) ^ rL(x, 3) ^ rL(x, 4);
FOR(x, 5)
{
D = C[(x + 4) % 5] ^ ROL(C[(x + 1) % 5], 1);
FOR(y, 5)
XL(x, y, D);
}
/*????*/ x = 1;
y = r = 0;
D = rL(x, y);
FOR(j, 24)
{
r += j + 1;
Y = (2 * x + 3 * y) % 5;
x = y;
y = Y;
C[0] = rL(x, y);
wL(x, y, ROL(D, r % 64));
D = C[0];
}
/*??*/ FOR(y, 5)
{
FOR(x, 5)
C[x] = rL(x, y);
FOR(x, 5)
wL(x, y, C[x] ^ ((~C[(x + 1) % 5]) & C[(x + 2) % 5]));
}
/*??*/ FOR(j, 7) if (DN_RefImpl_LFSR86540_(&R)) XL(0, 0, (uint64_t)1 << ((1 << j) - 1));
}
}
void DN_RefImpl_Keccak_(int r, int c, const uint8_t *in, uint64_t inLen, uint8_t sfx, uint8_t *out, uint64_t outLen)
{
/*initialize*/ uint8_t s[200];
int R = r / 8;
int i, b = 0;
FOR(i, 200)
s[i] = 0;
/*absorb*/ while (inLen > 0) {
b = (inLen < R) ? inLen : R;
FOR(i, b)
s[i] ^= in[i];
in += b;
inLen -= b;
if (b == R) {
DN_RefImpl_Keccak_F1600(s);
b = 0;
}
}
/*pad*/ s[b] ^= sfx;
if ((sfx & 0x80) && (b == (R - 1)))
DN_RefImpl_Keccak_F1600(s);
s[R - 1] ^= 0x80;
DN_RefImpl_Keccak_F1600(s);
/*squeeze*/ while (outLen > 0) {
b = (outLen < R) ? outLen : R;
FOR(i, b)
out[i] = s[i];
out += b;
outLen -= b;
if (outLen > 0)
DN_RefImpl_Keccak_F1600(s);
}
}
#undef XL
#undef wL
#undef rL
#undef ROL
#undef FOR
DN_MSVC_WARNING_POP
DN_GCC_WARNING_POP
#define DN_KC_IMPLEMENTATION
#include "../Standalone/dn_keccak.h"
#define DN_UT_HASH_X_MACRO \
DN_UT_HASH_X_ENTRY(SHA3_224, "SHA3-224") \
DN_UT_HASH_X_ENTRY(SHA3_256, "SHA3-256") \
DN_UT_HASH_X_ENTRY(SHA3_384, "SHA3-384") \
DN_UT_HASH_X_ENTRY(SHA3_512, "SHA3-512") \
DN_UT_HASH_X_ENTRY(Keccak_224, "Keccak-224") \
DN_UT_HASH_X_ENTRY(Keccak_256, "Keccak-256") \
DN_UT_HASH_X_ENTRY(Keccak_384, "Keccak-384") \
DN_UT_HASH_X_ENTRY(Keccak_512, "Keccak-512") \
DN_UT_HASH_X_ENTRY(Count, "Keccak-512")
enum DN_Tests__HashType
{
#define DN_UT_HASH_X_ENTRY(enum_val, string) Hash_##enum_val,
DN_UT_HASH_X_MACRO
#undef DN_UT_HASH_X_ENTRY
};
DN_Str8 const DN_UT_HASH_STRING_[] =
{
#define DN_UT_HASH_X_ENTRY(enum_val, string) DN_STR8(string),
DN_UT_HASH_X_MACRO
#undef DN_UT_HASH_X_ENTRY
};
void DN_Tests_KeccakDispatch_(DN_UTCore *test, int hash_type, DN_Str8 input)
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 input_hex = DN_CVT_BytesToHex(tmem.arena, input.data, input.size);
switch (hash_type) {
case Hash_SHA3_224: {
DN_KCBytes28 hash = DN_KC_SHA3_224Str8(input);
DN_KCBytes28 expect;
DN_RefImpl_FIPS202_SHA3_224_(DN_CAST(uint8_t *) input.data, input.size, (uint8_t *)expect.data);
DN_UT_AssertF(test,
DN_KC_Bytes28Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING56_FMT(DN_KC_Bytes28ToHex(&hash).data),
DN_KC_STRING56_FMT(DN_KC_Bytes28ToHex(&expect).data));
} break;
case Hash_SHA3_256: {
DN_KCBytes32 hash = DN_KC_SHA3_256Str8(input);
DN_KCBytes32 expect;
DN_RefImpl_FIPS202_SHA3_256_(DN_CAST(uint8_t *) input.data, input.size, (uint8_t *)expect.data);
DN_UT_AssertF(test,
DN_KC_Bytes32Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING64_FMT(DN_KC_Bytes32ToHex(&hash).data),
DN_KC_STRING64_FMT(DN_KC_Bytes32ToHex(&expect).data));
} break;
case Hash_SHA3_384: {
DN_KCBytes48 hash = DN_KC_SHA3_384Str8(input);
DN_KCBytes48 expect;
DN_RefImpl_FIPS202_SHA3_384_(DN_CAST(uint8_t *) input.data, input.size, (uint8_t *)expect.data);
DN_UT_AssertF(test,
DN_KC_Bytes48Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING96_FMT(DN_KC_Bytes48ToHex(&hash).data),
DN_KC_STRING96_FMT(DN_KC_Bytes48ToHex(&expect).data));
} break;
case Hash_SHA3_512: {
DN_KCBytes64 hash = DN_KC_SHA3_512Str8(input);
DN_KCBytes64 expect;
DN_RefImpl_FIPS202_SHA3_512_(DN_CAST(uint8_t *) input.data, input.size, (uint8_t *)expect.data);
DN_UT_AssertF(test,
DN_KC_Bytes64Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING128_FMT(DN_KC_Bytes64ToHex(&hash).data),
DN_KC_STRING128_FMT(DN_KC_Bytes64ToHex(&expect).data));
} break;
case Hash_Keccak_224: {
DN_KCBytes28 hash = DN_KC_Keccak224Str8(input);
DN_KCBytes28 expect;
DN_RefImpl_Keccak_(1152, 448, DN_CAST(uint8_t *) input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect));
DN_UT_AssertF(test,
DN_KC_Bytes28Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING56_FMT(DN_KC_Bytes28ToHex(&hash).data),
DN_KC_STRING56_FMT(DN_KC_Bytes28ToHex(&expect).data));
} break;
case Hash_Keccak_256: {
DN_KCBytes32 hash = DN_KC_Keccak256Str8(input);
DN_KCBytes32 expect;
DN_RefImpl_Keccak_(1088, 512, DN_CAST(uint8_t *) input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect));
DN_UT_AssertF(test,
DN_KC_Bytes32Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING64_FMT(DN_KC_Bytes32ToHex(&hash).data),
DN_KC_STRING64_FMT(DN_KC_Bytes32ToHex(&expect).data));
} break;
case Hash_Keccak_384: {
DN_KCBytes48 hash = DN_KC_Keccak384Str8(input);
DN_KCBytes48 expect;
DN_RefImpl_Keccak_(832, 768, DN_CAST(uint8_t *) input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect));
DN_UT_AssertF(test,
DN_KC_Bytes48Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING96_FMT(DN_KC_Bytes48ToHex(&hash).data),
DN_KC_STRING96_FMT(DN_KC_Bytes48ToHex(&expect).data));
} break;
case Hash_Keccak_512: {
DN_KCBytes64 hash = DN_KC_Keccak512Str8(input);
DN_KCBytes64 expect;
DN_RefImpl_Keccak_(576, 1024, DN_CAST(uint8_t *) input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect));
DN_UT_AssertF(test,
DN_KC_Bytes64Equals(&hash, &expect),
"\ninput: %.*s"
"\nhash: %.*s"
"\nexpect: %.*s",
DN_STR_FMT(input_hex),
DN_KC_STRING128_FMT(DN_KC_Bytes64ToHex(&hash).data),
DN_KC_STRING128_FMT(DN_KC_Bytes64ToHex(&expect).data));
} break;
}
}
DN_UTCore DN_Tests_Keccak()
{
DN_UTCore test = DN_UT_Init();
DN_Str8 const INPUTS[] = {
DN_STR8("abc"),
DN_STR8(""),
DN_STR8("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"),
DN_STR8("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmno"
"pqrstnopqrstu"),
};
DN_UT_LogF(&test, "DN_KC\n");
{
for (int hash_type = 0; hash_type < Hash_Count; hash_type++) {
DN_PCG32 rng = DN_PCG32_Init(0xd48e'be21'2af8'733d);
for (DN_Str8 input : INPUTS) {
DN_UT_BeginF(&test, "%.*s - Input: %.*s", DN_STR_FMT(DN_UT_HASH_STRING_[hash_type]), DN_CAST(int) DN_Min(input.size, 54), input.data);
DN_Tests_KeccakDispatch_(&test, hash_type, input);
DN_UT_End(&test);
}
DN_UT_BeginF(&test, "%.*s - Deterministic random inputs", DN_STR_FMT(DN_UT_HASH_STRING_[hash_type]));
for (DN_USize index = 0; index < 128; index++) {
char src[4096] = {};
uint32_t src_size = DN_PCG32_Range(&rng, 0, sizeof(src));
for (DN_USize src_index = 0; src_index < src_size; src_index++)
src[src_index] = DN_CAST(char) DN_PCG32_Range(&rng, 0, 255);
DN_Str8 input = DN_Str8_Init(src, src_size);
DN_Tests_KeccakDispatch_(&test, hash_type, input);
}
DN_UT_End(&test);
}
}
return test;
}
#endif // defined(DN_UNIT_TESTS_WITH_KECCAK)
static DN_UTCore DN_Tests_M4()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_M4\n");
{
DN_UT_Test(&result, "Simple translate and scale matrix")
{
DN_M4 translate = DN_M4_TranslateF(1, 2, 3);
DN_M4 scale = DN_M4_ScaleF(2, 2, 2);
DN_M4 mul_result = DN_M4_Mul(translate, scale);
const DN_M4 EXPECT = {
{
{2, 0, 0, 0},
{0, 2, 0, 0},
{0, 0, 2, 0},
{1, 2, 3, 1},
}
};
DN_UT_AssertF(&result,
memcmp(mul_result.columns, EXPECT.columns, sizeof(EXPECT)) == 0,
"\nresult =\n%s\nexpected =\n%s",
DN_M4_ColumnMajorString(mul_result).data,
DN_M4_ColumnMajorString(EXPECT).data);
}
}
return result;
}
static DN_UTCore DN_Tests_OS()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_OS\n");
{
DN_UT_Test(&result, "Generate secure RNG bytes with nullptr")
{
DN_B32 os_result = DN_OS_SecureRNGBytes(nullptr, 1);
DN_UT_Assert(&result, os_result == false);
}
DN_UT_Test(&result, "Generate secure RNG 32 bytes")
{
char const ZERO[32] = {};
char buf[32] = {};
bool os_result = DN_OS_SecureRNGBytes(buf, DN_ArrayCountU(buf));
DN_UT_Assert(&result, os_result);
DN_UT_Assert(&result, DN_Memcmp(buf, ZERO, DN_ArrayCountU(buf)) != 0);
}
DN_UT_Test(&result, "Generate secure RNG 0 bytes")
{
char buf[32] = {};
buf[0] = 'Z';
DN_B32 os_result = DN_OS_SecureRNGBytes(buf, 0);
DN_UT_Assert(&result, os_result);
DN_UT_Assert(&result, buf[0] == 'Z');
}
DN_UT_Test(&result, "Query executable directory")
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 os_result = DN_OS_EXEDir(tmem.arena);
DN_UT_Assert(&result, DN_Str8_HasData(os_result));
DN_UT_AssertF(&result, DN_OS_DirExists(os_result), "result(%zu): %.*s", os_result.size, DN_STR_FMT(os_result));
}
DN_UT_Test(&result, "DN_OS_PerfCounterNow")
{
uint64_t os_result = DN_OS_PerfCounterNow();
DN_UT_Assert(&result, os_result != 0);
}
DN_UT_Test(&result, "Consecutive ticks are ordered")
{
uint64_t a = DN_OS_PerfCounterNow();
uint64_t b = DN_OS_PerfCounterNow();
DN_UT_AssertF(&result, b >= a, "a: %" PRIu64 ", b: %" PRIu64, a, b);
}
DN_UT_Test(&result, "Ticks to time are a correct order of magnitude")
{
uint64_t a = DN_OS_PerfCounterNow();
uint64_t b = DN_OS_PerfCounterNow();
DN_F64 s = DN_OS_PerfCounterS(a, b);
DN_F64 ms = DN_OS_PerfCounterMs(a, b);
DN_F64 us = DN_OS_PerfCounterUs(a, b);
DN_F64 ns = DN_OS_PerfCounterNs(a, b);
DN_UT_AssertF(&result, s <= ms, "s: %f, ms: %f", s, ms);
DN_UT_AssertF(&result, ms <= us, "ms: %f, us: %f", ms, us);
DN_UT_AssertF(&result, us <= ns, "us: %f, ns: %f", us, ns);
}
}
DN_UT_LogF(&result, "\nDN_OS Filesystem\n");
{
DN_UT_Test(&result, "Make directory recursive \"abcd/efgh\"")
{
DN_UT_AssertF(&result, DN_OS_MakeDir(DN_STR8("abcd/efgh")), "Failed to make directory");
DN_UT_AssertF(&result, DN_OS_DirExists(DN_STR8("abcd")), "Directory was not made");
DN_UT_AssertF(&result, DN_OS_DirExists(DN_STR8("abcd/efgh")), "Subdirectory was not made");
DN_UT_AssertF(&result, DN_OS_FileExists(DN_STR8("abcd")) == false, "This function should only return true for files");
DN_UT_AssertF(&result, DN_OS_FileExists(DN_STR8("abcd/efgh")) == false, "This function should only return true for files");
DN_UT_AssertF(&result, DN_OS_PathDelete(DN_STR8("abcd/efgh")), "Failed to delete directory");
DN_UT_AssertF(&result, DN_OS_PathDelete(DN_STR8("abcd")), "Failed to cleanup directory");
}
DN_UT_Test(&result, "File write, read, copy, move and delete")
{
// NOTE: Write step
DN_Str8 const SRC_FILE = DN_STR8("dn_result_file");
DN_B32 write_result = DN_OS_WriteAll(SRC_FILE, DN_STR8("1234"), nullptr);
DN_UT_Assert(&result, write_result);
DN_UT_Assert(&result, DN_OS_FileExists(SRC_FILE));
// NOTE: Read step
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 read_file = DN_OS_ReadAll(tmem.arena, SRC_FILE, nullptr);
DN_UT_AssertF(&result, DN_Str8_HasData(read_file), "Failed to load file");
DN_UT_AssertF(&result, read_file.size == 4, "File read wrong amount of bytes (%zu)", read_file.size);
DN_UT_AssertF(&result, DN_Str8_Eq(read_file, DN_STR8("1234")), "Read %zu bytes instead of the expected 4: '%.*s'", read_file.size, DN_STR_FMT(read_file));
// NOTE: Copy step
DN_Str8 const COPY_FILE = DN_STR8("dn_result_file_copy");
DN_B32 copy_result = DN_OS_CopyFile(SRC_FILE, COPY_FILE, true /*overwrite*/, nullptr);
DN_UT_Assert(&result, copy_result);
DN_UT_Assert(&result, DN_OS_FileExists(COPY_FILE));
// NOTE: Move step
DN_Str8 const MOVE_FILE = DN_STR8("dn_result_file_move");
DN_B32 move_result = DN_OS_MoveFile(COPY_FILE, MOVE_FILE, true /*overwrite*/, nullptr);
DN_UT_Assert(&result, move_result);
DN_UT_Assert(&result, DN_OS_FileExists(MOVE_FILE));
DN_UT_AssertF(&result, DN_OS_FileExists(COPY_FILE) == false, "Moving a file should remove the original");
// NOTE: Delete step
DN_B32 delete_src_file = DN_OS_PathDelete(SRC_FILE);
DN_B32 delete_moved_file = DN_OS_PathDelete(MOVE_FILE);
DN_UT_Assert(&result, delete_src_file);
DN_UT_Assert(&result, delete_moved_file);
// NOTE: Deleting non-existent file fails
DN_B32 delete_non_existent_src_file = DN_OS_PathDelete(SRC_FILE);
DN_B32 delete_non_existent_moved_file = DN_OS_PathDelete(MOVE_FILE);
DN_UT_Assert(&result, delete_non_existent_moved_file == false);
DN_UT_Assert(&result, delete_non_existent_src_file == false);
}
}
return result;
}
static DN_UTCore DN_Tests_Rect()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_Rect\n");
{
DN_UT_Test(&result, "No intersection")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init1N(0), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(200, 0), DN_V2F32_Init2N(200, 200));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 0 && ab_max.y == 0,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "A's min intersects B")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(50, 50), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 50 && ab.pos.y == 50 && ab_max.x == 100 && ab_max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "B's min intersects A")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(50, 50), DN_V2F32_Init2N(100, 100));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 50 && ab.pos.y == 50 && ab_max.x == 100 && ab_max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "A's max intersects B")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(-50, -50), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 50 && ab_max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "B's max intersects A")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(-50, -50), DN_V2F32_Init2N(100, 100));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 50 && ab_max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "B contains A")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(25, 25), DN_V2F32_Init2N(25, 25));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 25 && ab.pos.y == 25 && ab_max.x == 50 && ab_max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "A contains B")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect b = DN_Rect_Init2V2(DN_V2F32_Init2N(25, 25), DN_V2F32_Init2N(25, 25));
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 25 && ab.pos.y == 25 && ab_max.x == 50 && ab_max.y == 50,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
DN_UT_Test(&result, "A equals B")
{
DN_Rect a = DN_Rect_Init2V2(DN_V2F32_Init2N(0, 0), DN_V2F32_Init2N(100, 100));
DN_Rect b = a;
DN_Rect ab = DN_Rect_Intersection(a, b);
DN_V2F32 ab_max = ab.pos + ab.size;
DN_UT_AssertF(&result,
ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 100 && ab_max.y == 100,
"ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }",
ab.pos.x,
ab.pos.y,
ab_max.x,
ab_max.y);
}
}
return result;
}
static DN_UTCore DN_Tests_Str8()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_Str8\n");
{
DN_UT_Test(&result, "Initialise with string literal w/ macro")
{
DN_Str8 string = DN_STR8("AB");
DN_UT_AssertF(&result, string.size == 2, "size: %zu", string.size);
DN_UT_AssertF(&result, string.data[0] == 'A', "string[0]: %c", string.data[0]);
DN_UT_AssertF(&result, string.data[1] == 'B', "string[1]: %c", string.data[1]);
}
DN_UT_Test(&result, "Initialise with format string")
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 string = DN_Str8_InitF(tmem.arena, "%s", "AB");
DN_UT_AssertF(&result, string.size == 2, "size: %zu", string.size);
DN_UT_AssertF(&result, string.data[0] == 'A', "string[0]: %c", string.data[0]);
DN_UT_AssertF(&result, string.data[1] == 'B', "string[1]: %c", string.data[1]);
DN_UT_AssertF(&result, string.data[2] == 0, "string[2]: %c", string.data[2]);
}
DN_UT_Test(&result, "Copy string")
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 string = DN_STR8("AB");
DN_Str8 copy = DN_Str8_Copy(tmem.arena, string);
DN_UT_AssertF(&result, copy.size == 2, "size: %zu", copy.size);
DN_UT_AssertF(&result, copy.data[0] == 'A', "copy[0]: %c", copy.data[0]);
DN_UT_AssertF(&result, copy.data[1] == 'B', "copy[1]: %c", copy.data[1]);
DN_UT_AssertF(&result, copy.data[2] == 0, "copy[2]: %c", copy.data[2]);
}
DN_UT_Test(&result, "Trim whitespace around string")
{
DN_Str8 string = DN_Str8_TrimWhitespaceAround(DN_STR8(" AB "));
DN_UT_AssertF(&result, DN_Str8_Eq(string, DN_STR8("AB")), "[string=%.*s]", DN_STR_FMT(string));
}
DN_UT_Test(&result, "Allocate string from arena")
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 string = DN_Str8_Alloc(tmem.arena, 2, DN_ZeroMem_No);
DN_UT_AssertF(&result, string.size == 2, "size: %zu", string.size);
}
// NOTE: TrimPrefix/Suffix /////////////////////////////////////////////////////////////////////
DN_UT_Test(&result, "Trim prefix with matching prefix")
{
DN_Str8 input = DN_STR8("nft/abc");
DN_Str8 str_result = DN_Str8_TrimPrefix(input, DN_STR8("nft/"));
DN_UT_AssertF(&result, DN_Str8_Eq(str_result, DN_STR8("abc")), "%.*s", DN_STR_FMT(str_result));
}
DN_UT_Test(&result, "Trim prefix with non matching prefix")
{
DN_Str8 input = DN_STR8("nft/abc");
DN_Str8 str_result = DN_Str8_TrimPrefix(input, DN_STR8(" ft/"));
DN_UT_AssertF(&result, DN_Str8_Eq(str_result, input), "%.*s", DN_STR_FMT(str_result));
}
DN_UT_Test(&result, "Trim suffix with matching suffix")
{
DN_Str8 input = DN_STR8("nft/abc");
DN_Str8 str_result = DN_Str8_TrimSuffix(input, DN_STR8("abc"));
DN_UT_AssertF(&result, DN_Str8_Eq(str_result, DN_STR8("nft/")), "%.*s", DN_STR_FMT(str_result));
}
DN_UT_Test(&result, "Trim suffix with non matching suffix")
{
DN_Str8 input = DN_STR8("nft/abc");
DN_Str8 str_result = DN_Str8_TrimSuffix(input, DN_STR8("ab"));
DN_UT_AssertF(&result, DN_Str8_Eq(str_result, input), "%.*s", DN_STR_FMT(str_result));
}
// NOTE: DN_Str8_IsAllDigits //////////////////////////////////////////////////////////////
DN_UT_Test(&result, "Is all digits fails on non-digit string")
{
DN_B32 str_result = DN_Str8_IsAll(DN_STR8("@123string"), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, str_result == false);
}
DN_UT_Test(&result, "Is all digits fails on nullptr")
{
DN_B32 str_result = DN_Str8_IsAll(DN_Str8_Init(nullptr, 0), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, str_result == false);
}
DN_UT_Test(&result, "Is all digits fails on nullptr w/ size")
{
DN_B32 str_result = DN_Str8_IsAll(DN_Str8_Init(nullptr, 1), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, str_result == false);
}
DN_UT_Test(&result, "Is all digits fails on string w/ 0 size")
{
char const buf[] = "@123string";
DN_B32 str_result = DN_Str8_IsAll(DN_Str8_Init(buf, 0), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, !str_result);
}
DN_UT_Test(&result, "Is all digits success")
{
DN_B32 str_result = DN_Str8_IsAll(DN_STR8("23"), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, DN_CAST(bool) str_result == true);
}
DN_UT_Test(&result, "Is all digits fails on whitespace")
{
DN_B32 str_result = DN_Str8_IsAll(DN_STR8("23 "), DN_Str8IsAll_Digits);
DN_UT_Assert(&result, DN_CAST(bool) str_result == false);
}
// NOTE: DN_Str8_BinarySplit ///////////////////////////////////////////////////////////////////
{
{
char const *TEST_FMT = "Binary split \"%.*s\" with \"%.*s\"";
DN_Str8 delimiter = DN_STR8("/");
DN_Str8 input = DN_STR8("abcdef");
DN_UT_Test(&result, TEST_FMT, DN_STR_FMT(input), DN_STR_FMT(delimiter))
{
DN_Str8BinarySplitResult split = DN_Str8_BinarySplit(input, delimiter);
DN_UT_AssertF(&result, DN_Str8_Eq(split.lhs, DN_STR8("abcdef")), "[lhs=%.*s]", DN_STR_FMT(split.lhs));
DN_UT_AssertF(&result, DN_Str8_Eq(split.rhs, DN_STR8("")), "[rhs=%.*s]", DN_STR_FMT(split.rhs));
}
input = DN_STR8("abc/def");
DN_UT_Test(&result, TEST_FMT, DN_STR_FMT(input), DN_STR_FMT(delimiter))
{
DN_Str8BinarySplitResult split = DN_Str8_BinarySplit(input, delimiter);
DN_UT_AssertF(&result, DN_Str8_Eq(split.lhs, DN_STR8("abc")), "[lhs=%.*s]", DN_STR_FMT(split.lhs));
DN_UT_AssertF(&result, DN_Str8_Eq(split.rhs, DN_STR8("def")), "[rhs=%.*s]", DN_STR_FMT(split.rhs));
}
input = DN_STR8("/abcdef");
DN_UT_Test(&result, TEST_FMT, DN_STR_FMT(input), DN_STR_FMT(delimiter))
{
DN_Str8BinarySplitResult split = DN_Str8_BinarySplit(input, delimiter);
DN_UT_AssertF(&result, DN_Str8_Eq(split.lhs, DN_STR8("")), "[lhs=%.*s]", DN_STR_FMT(split.lhs));
DN_UT_AssertF(&result, DN_Str8_Eq(split.rhs, DN_STR8("abcdef")), "[rhs=%.*s]", DN_STR_FMT(split.rhs));
}
}
{
DN_Str8 delimiter = DN_STR8("-=-");
DN_Str8 input = DN_STR8("123-=-456");
DN_UT_Test(&result, "Binary split \"%.*s\" with \"%.*s\"", DN_STR_FMT(input), DN_STR_FMT(delimiter))
{
DN_Str8BinarySplitResult split = DN_Str8_BinarySplit(input, delimiter);
DN_UT_AssertF(&result, DN_Str8_Eq(split.lhs, DN_STR8("123")), "[lhs=%.*s]", DN_STR_FMT(split.lhs));
DN_UT_AssertF(&result, DN_Str8_Eq(split.rhs, DN_STR8("456")), "[rhs=%.*s]", DN_STR_FMT(split.rhs));
}
}
}
// NOTE: DN_Str8_ToI64 /////////////////////////////////////////////////////////////////////////
DN_UT_Test(&result, "To I64: Convert null string")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_Str8_Init(nullptr, 5), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 0);
}
DN_UT_Test(&result, "To I64: Convert empty string")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8(""), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 0);
}
DN_UT_Test(&result, "To I64: Convert \"1\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("1"), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 1);
}
DN_UT_Test(&result, "To I64: Convert \"-0\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("-0"), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 0);
}
DN_UT_Test(&result, "To I64: Convert \"-1\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("-1"), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == -1);
}
DN_UT_Test(&result, "To I64: Convert \"1.2\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("1.2"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_Assert(&result, str_result.value == 1);
}
DN_UT_Test(&result, "To I64: Convert \"1,234\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("1,234"), ',');
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 1234);
}
DN_UT_Test(&result, "To I64: Convert \"1,2\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("1,2"), ',');
DN_UT_Assert(&result, str_result.success);
DN_UT_Assert(&result, str_result.value == 12);
}
DN_UT_Test(&result, "To I64: Convert \"12a3\"")
{
DN_Str8ToI64Result str_result = DN_Str8_ToI64(DN_STR8("12a3"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_Assert(&result, str_result.value == 12);
}
// NOTE: DN_Str8_ToU64 /////////////////////////////////////////////////////////////////////////
DN_UT_Test(&result, "To U64: Convert nullptr")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_Str8_Init(nullptr, 5), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_AssertF(&result, str_result.value == 0, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert empty string")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8(""), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_AssertF(&result, str_result.value == 0, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"1\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("1"), 0);
DN_UT_Assert(&result, str_result.success);
DN_UT_AssertF(&result, str_result.value == 1, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"-0\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("-0"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_AssertF(&result, str_result.value == 0, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"-1\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("-1"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_AssertF(&result, str_result.value == 0, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"1.2\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("1.2"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_AssertF(&result, str_result.value == 1, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"1,234\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("1,234"), ',');
DN_UT_Assert(&result, str_result.success);
DN_UT_AssertF(&result, str_result.value == 1234, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"1,2\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("1,2"), ',');
DN_UT_Assert(&result, str_result.success);
DN_UT_AssertF(&result, str_result.value == 12, "result: %" PRIu64, str_result.value);
}
DN_UT_Test(&result, "To U64: Convert \"12a3\"")
{
DN_Str8ToU64Result str_result = DN_Str8_ToU64(DN_STR8("12a3"), 0);
DN_UT_Assert(&result, !str_result.success);
DN_UT_AssertF(&result, str_result.value == 12, "result: %" PRIu64, str_result.value);
}
// NOTE: DN_Str8_Find /////////////////////////////////////////////////////////////////////
DN_UT_Test(&result, "Find: String (char) is not in buffer")
{
DN_Str8 buf = DN_STR8("836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55");
DN_Str8 find = DN_STR8("2");
DN_Str8FindResult str_result = DN_Str8_FindStr8(buf, find, DN_Str8EqCase_Sensitive);
DN_UT_Assert(&result, !str_result.found);
DN_UT_Assert(&result, str_result.index == 0);
DN_UT_Assert(&result, str_result.match.data == nullptr);
DN_UT_Assert(&result, str_result.match.size == 0);
}
DN_UT_Test(&result, "Find: String (char) is in buffer")
{
DN_Str8 buf = DN_STR8("836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55");
DN_Str8 find = DN_STR8("6");
DN_Str8FindResult str_result = DN_Str8_FindStr8(buf, find, DN_Str8EqCase_Sensitive);
DN_UT_Assert(&result, str_result.found);
DN_UT_Assert(&result, str_result.index == 2);
DN_UT_Assert(&result, str_result.match.data[0] == '6');
}
// NOTE: DN_Str8_FileNameFromPath //////////////////////////////////////////////////////////////
DN_UT_Test(&result, "File name from Windows path")
{
DN_Str8 buf = DN_STR8("C:\\ABC\\str_result.exe");
DN_Str8 str_result = DN_Str8_FileNameFromPath(buf);
DN_UT_AssertF(&result, str_result == DN_STR8("str_result.exe"), "%.*s", DN_STR_FMT(str_result));
}
DN_UT_Test(&result, "File name from Linux path")
{
DN_Str8 buf = DN_STR8("/ABC/str_result.exe");
DN_Str8 str_result = DN_Str8_FileNameFromPath(buf);
DN_UT_AssertF(&result, str_result == DN_STR8("str_result.exe"), "%.*s", DN_STR_FMT(str_result));
}
// NOTE: DN_Str8_TrimPrefix ////////////////////////////////////////////////////////////////////
DN_UT_Test(&result, "Trim prefix")
{
DN_Str8 prefix = DN_STR8("@123");
DN_Str8 buf = DN_STR8("@123string");
DN_Str8 str_result = DN_Str8_TrimPrefix(buf, prefix, DN_Str8EqCase_Sensitive);
DN_UT_Assert(&result, str_result == DN_STR8("string"));
}
}
return result;
}
static DN_UTCore DN_Tests_TicketMutex()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_TicketMutex\n");
{
DN_UT_Test(&result, "Ticket mutex start and stop")
{
// TODO: We don't have a meaningful result but since atomics are
// implemented with a macro this ensures that we result that they are
// written correctly.
DN_TicketMutex mutex = {};
DN_TicketMutex_Begin(&mutex);
DN_TicketMutex_End(&mutex);
DN_UT_Assert(&result, mutex.ticket == mutex.serving);
}
DN_UT_Test(&result, "Ticket mutex start and stop w/ advanced API")
{
DN_TicketMutex mutex = {};
unsigned int ticket_a = DN_TicketMutex_MakeTicket(&mutex);
unsigned int ticket_b = DN_TicketMutex_MakeTicket(&mutex);
DN_UT_Assert(&result, DN_CAST(bool) DN_TicketMutex_CanLock(&mutex, ticket_b) == false);
DN_UT_Assert(&result, DN_CAST(bool) DN_TicketMutex_CanLock(&mutex, ticket_a) == true);
DN_TicketMutex_BeginTicket(&mutex, ticket_a);
DN_TicketMutex_End(&mutex);
DN_TicketMutex_BeginTicket(&mutex, ticket_b);
DN_TicketMutex_End(&mutex);
DN_UT_Assert(&result, mutex.ticket == mutex.serving);
DN_UT_Assert(&result, mutex.ticket == ticket_b + 1);
}
}
return result;
}
static DN_UTCore DN_Tests_VArray()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "DN_VArray\n");
{
{
DN_VArray<uint32_t> array = DN_VArray_InitByteSize<uint32_t>(DN_Kilobytes(64));
DN_DEFER
{
DN_VArray_Deinit(&array);
};
DN_UT_Test(&result, "Test adding an array of items to the array")
{
uint32_t array_literal[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
DN_VArray_AddArray<uint32_t>(&array, array_literal, DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test stable erase, 1 item, the '2' value from the array")
{
DN_VArray_EraseRange(&array, 2 /*begin_index*/, 1 /*count*/, DN_ArrayErase_Stable);
uint32_t array_literal[] = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test unstable erase, 1 item, the '1' value from the array")
{
DN_VArray_EraseRange(&array, 1 /*begin_index*/, 1 /*count*/, DN_ArrayErase_Unstable);
uint32_t array_literal[] = {0, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_ArrayErase erase_enums[] = {DN_ArrayErase_Stable, DN_ArrayErase_Unstable};
DN_UT_Test(&result, "Test un/stable erase, OOB")
{
for (DN_ArrayErase erase : erase_enums) {
uint32_t array_literal[] = {0, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
DN_VArray_EraseRange(&array, DN_ArrayCountU(array_literal) /*begin_index*/, DN_ArrayCountU(array_literal) + 100 /*count*/, erase);
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
}
DN_UT_Test(&result, "Test flipped begin/end index stable erase, 2 items, the '15, 3' value from the array")
{
DN_VArray_EraseRange(&array, 2 /*begin_index*/, -2 /*count*/, DN_ArrayErase_Stable);
uint32_t array_literal[] = {0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test flipped begin/end index unstable erase, 2 items, the '4, 5' value from the array")
{
DN_VArray_EraseRange(&array, 2 /*begin_index*/, -2 /*count*/, DN_ArrayErase_Unstable);
uint32_t array_literal[] = {0, 13, 14, 6, 7, 8, 9, 10, 11, 12};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test stable erase range, 2+1 (oob) item, the '13, 14, +1 OOB' value from the array")
{
DN_VArray_EraseRange(&array, 8 /*begin_index*/, 3 /*count*/, DN_ArrayErase_Stable);
uint32_t array_literal[] = {0, 13, 14, 6, 7, 8, 9, 10};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test unstable erase range, 3+1 (oob) item, the '11, 12, +1 OOB' value from the array")
{
DN_VArray_EraseRange(&array, 6 /*begin_index*/, 3 /*count*/, DN_ArrayErase_Unstable);
uint32_t array_literal[] = {0, 13, 14, 6, 7, 8};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test stable erase -overflow OOB, erasing the '0, 13' value from the array")
{
DN_VArray_EraseRange(&array, 1 /*begin_index*/, -DN_ISIZE_MAX /*count*/, DN_ArrayErase_Stable);
uint32_t array_literal[] = {14, 6, 7, 8};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test unstable erase +overflow OOB, erasing the '7, 8' value from the array")
{
DN_VArray_EraseRange(&array, 2 /*begin_index*/, DN_ISIZE_MAX /*count*/, DN_ArrayErase_Unstable);
uint32_t array_literal[] = {14, 6};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(array_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, array_literal, DN_ArrayCountU(array_literal) * sizeof(array_literal[0])) == 0);
}
DN_UT_Test(&result, "Test adding an array of items after erase")
{
uint32_t array_literal[] = {0, 1, 2, 3};
DN_VArray_AddArray<uint32_t>(&array, array_literal, DN_ArrayCountU(array_literal));
uint32_t expected_literal[] = {14, 6, 0, 1, 2, 3};
DN_UT_Assert(&result, array.size == DN_ArrayCountU(expected_literal));
DN_UT_Assert(&result, DN_Memcmp(array.data, expected_literal, DN_ArrayCountU(expected_literal) * sizeof(expected_literal[0])) == 0);
}
}
DN_UT_Test(&result, "Array of unaligned objects are contiguously laid out in memory")
{
// NOTE: Since we allocate from a virtual memory block, each time
// we request memory from the block we can demand some alignment
// on the returned pointer from the memory block. If there's
// additional alignment done in that function then we can no
// longer access the items in the array contiguously leading to
// confusing memory "corruption" errors.
//
// This result makes sure that the unaligned objects are allocated
// from the memory block (and hence the array) contiguously
// when the size of the object is not aligned with the required
// alignment of the object.
DN_MSVC_WARNING_PUSH
DN_MSVC_WARNING_DISABLE(4324) // warning C4324: 'TestVArray::UnalignedObject': structure was padded due to alignment specifier
struct alignas(8) UnalignedObject
{
char data[511];
};
DN_MSVC_WARNING_POP
DN_VArray<UnalignedObject> array = DN_VArray_InitByteSize<UnalignedObject>(DN_Kilobytes(64));
DN_DEFER
{
DN_VArray_Deinit(&array);
};
// NOTE: Verify that the items returned from the data array are
// contiguous in memory.
UnalignedObject *make_item_a = DN_VArray_MakeArray(&array, 1, DN_ZeroMem_Yes);
UnalignedObject *make_item_b = DN_VArray_MakeArray(&array, 1, DN_ZeroMem_Yes);
DN_Memset(make_item_a->data, 'a', sizeof(make_item_a->data));
DN_Memset(make_item_b->data, 'b', sizeof(make_item_b->data));
DN_UT_Assert(&result, (uintptr_t)make_item_b == (uintptr_t)(make_item_a + 1));
// NOTE: Verify that accessing the items from the data array yield
// the same object.
DN_UT_Assert(&result, array.size == 2);
UnalignedObject *data_item_a = array.data + 0;
UnalignedObject *data_item_b = array.data + 1;
DN_UT_Assert(&result, (uintptr_t)data_item_b == (uintptr_t)(data_item_a + 1));
DN_UT_Assert(&result, (uintptr_t)data_item_b == (uintptr_t)(make_item_a + 1));
DN_UT_Assert(&result, (uintptr_t)data_item_b == (uintptr_t)make_item_b);
for (DN_USize i = 0; i < sizeof(data_item_a->data); i++)
DN_UT_Assert(&result, data_item_a->data[i] == 'a');
for (DN_USize i = 0; i < sizeof(data_item_b->data); i++)
DN_UT_Assert(&result, data_item_b->data[i] == 'b');
}
}
return result;
}
#if defined(DN_PLATFORM_WIN32)
static DN_UTCore DN_Tests_Win()
{
DN_UTCore result = DN_UT_Init();
DN_UT_LogF(&result, "OS Win32\n");
{
DN_OSTLSTMem tmem = DN_OS_TLSTMem(nullptr);
DN_Str8 input8 = DN_STR8("String");
DN_Str16 input16 = DN_Str16{(wchar_t *)(L"String"), sizeof(L"String") / sizeof(L"String"[0]) - 1};
DN_UT_Test(&result, "Str8 to Str16")
{
DN_Str16 str_result = DN_Win_Str8ToStr16(tmem.arena, input8);
DN_UT_Assert(&result, str_result == input16);
}
DN_UT_Test(&result, "Str16 to Str8")
{
DN_Str8 str_result = DN_Win_Str16ToStr8(tmem.arena, input16);
DN_UT_Assert(&result, str_result == input8);
}
DN_UT_Test(&result, "Str16 to Str8: Null terminates string")
{
int size_required = DN_Win_Str16ToStr8Buffer(input16, nullptr, 0);
char *string = DN_Arena_NewArray(tmem.arena, char, size_required + 1, DN_ZeroMem_No);
// Fill the string with error sentinels
DN_Memset(string, 'Z', size_required + 1);
int size_returned = DN_Win_Str16ToStr8Buffer(input16, string, size_required + 1);
char const EXPECTED[] = {'S', 't', 'r', 'i', 'n', 'g', 0};
DN_UT_AssertF(&result, size_required == size_returned, "string_size: %d, result: %d", size_required, size_returned);
DN_UT_AssertF(&result, size_returned == DN_ArrayCountU(EXPECTED) - 1, "string_size: %d, expected: %zu", size_returned, DN_ArrayCountU(EXPECTED) - 1);
DN_UT_Assert(&result, DN_Memcmp(EXPECTED, string, sizeof(EXPECTED)) == 0);
}
DN_UT_Test(&result, "Str16 to Str8: Arena null terminates string")
{
DN_Str8 string8 = DN_Win_Str16ToStr8(tmem.arena, input16);
int size_returned = DN_Win_Str16ToStr8Buffer(input16, nullptr, 0);
char const EXPECTED[] = {'S', 't', 'r', 'i', 'n', 'g', 0};
DN_UT_AssertF(&result, DN_CAST(int) string8.size == size_returned, "string_size: %d, result: %d", DN_CAST(int) string8.size, size_returned);
DN_UT_AssertF(&result, DN_CAST(int) string8.size == DN_ArrayCountU(EXPECTED) - 1, "string_size: %d, expected: %zu", DN_CAST(int) string8.size, DN_ArrayCountU(EXPECTED) - 1);
DN_UT_Assert(&result, DN_Memcmp(EXPECTED, string8.data, sizeof(EXPECTED)) == 0);
}
}
return result;
}
#endif // DN_PLATFORM_WIN32
DN_TestsResult DN_Tests_RunSuite(DN_TestsPrint print)
{
DN_UTCore tests[] =
{
DN_Tests_Base(),
DN_Tests_Arena(),
DN_Tests_Bin(),
DN_Tests_BinarySearch(),
DN_Tests_DSMap(),
DN_Tests_FStr8(),
DN_Tests_FArray(),
DN_Tests_Intrinsics(),
#if defined(DN_UNIT_TESTS_WITH_KECCAK)
DN_Tests_Keccak(),
#endif
DN_Tests_M4(),
DN_Tests_OS(),
DN_Tests_Rect(),
DN_Tests_Str8(),
DN_Tests_TicketMutex(),
DN_Tests_VArray(),
#if defined(DN_PLATFORM_WIN32)
DN_Tests_Win(),
#endif
};
DN_TestsResult result = {};
for (const DN_UTCore &test : tests) {
result.total_tests += test.num_tests_in_group;
result.total_good_tests += test.num_tests_ok_in_group;
}
result.passed = result.total_tests == result.total_good_tests;
bool print_summary = false;
for (DN_UTCore &test : tests) {
bool do_print = print == DN_TestsPrint_Yes;
if (print == DN_TestsPrint_OnFailure && test.num_tests_ok_in_group != test.num_tests_in_group)
do_print = true;
if (do_print) {
print_summary = true;
DN_UT_PrintTests(&test);
}
DN_UT_Deinit(&test);
}
if (print_summary)
fprintf(stdout, "Summary: %d/%d tests succeeded\n", result.total_good_tests, result.total_tests);
return result;
}