#pragma once #include "dqn.h" /* //////////////////////////////////////////////////////////////////////////////////////////////////// // // $$\ $$\ $$$$$$\ $$$$$$$$\ $$\ $$\ // $$$\ $$$ |$$ __$$\\__$$ __|$$ | $$ | // $$$$\ $$$$ |$$ / $$ | $$ | $$ | $$ | // $$\$$\$$ $$ |$$$$$$$$ | $$ | $$$$$$$$ | // $$ \$$$ $$ |$$ __$$ | $$ | $$ __$$ | // $$ |\$ /$$ |$$ | $$ | $$ | $$ | $$ | // $$ | \_/ $$ |$$ | $$ | $$ | $$ | $$ | // \__| \__|\__| \__| \__| \__| \__| // // dqn_math.cpp // //////////////////////////////////////////////////////////////////////////////////////////////////// */ #if !defined(DN_NO_V2) // NOTE: [$VEC2] Vector2 /////////////////////////////////////////////////////////////////////////// // NOTE: DN_V2I32 DN_API bool operator==(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = (lhs.x == rhs.x) && (lhs.y == rhs.y); return result; } DN_API bool operator!=(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = !(lhs == rhs); return result; } DN_API bool operator>=(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = (lhs.x >= rhs.x) && (lhs.y >= rhs.y); return result; } DN_API bool operator<=(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = (lhs.x <= rhs.x) && (lhs.y <= rhs.y); return result; } DN_API bool operator<(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = (lhs.x < rhs.x) && (lhs.y < rhs.y); return result; } DN_API bool operator>(DN_V2I32 lhs, DN_V2I32 rhs) { bool result = (lhs.x > rhs.x) && (lhs.y > rhs.y); return result; } DN_API DN_V2I32 operator-(DN_V2I32 lhs, DN_V2I32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x - rhs.x, lhs.y - rhs.y); return result; } DN_API DN_V2I32 operator-(DN_V2I32 lhs) { DN_V2I32 result = DN_V2I32_Init2N(-lhs.x, -lhs.y); return result; } DN_API DN_V2I32 operator+(DN_V2I32 lhs, DN_V2I32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x + rhs.x, lhs.y + rhs.y); return result; } DN_API DN_V2I32 operator*(DN_V2I32 lhs, DN_V2I32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x * rhs.x, lhs.y * rhs.y); return result; } DN_API DN_V2I32 operator*(DN_V2I32 lhs, DN_F32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } DN_API DN_V2I32 operator*(DN_V2I32 lhs, int32_t rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } DN_API DN_V2I32 operator/(DN_V2I32 lhs, DN_V2I32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x / rhs.x, lhs.y / rhs.y); return result; } DN_API DN_V2I32 operator/(DN_V2I32 lhs, DN_F32 rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } DN_API DN_V2I32 operator/(DN_V2I32 lhs, int32_t rhs) { DN_V2I32 result = DN_V2I32_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } DN_API DN_V2I32 &operator*=(DN_V2I32 &lhs, DN_V2I32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2I32 &operator*=(DN_V2I32 &lhs, DN_F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2I32 &operator*=(DN_V2I32 &lhs, int32_t rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2I32 &operator/=(DN_V2I32 &lhs, DN_V2I32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2I32 &operator/=(DN_V2I32 &lhs, DN_F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2I32 &operator/=(DN_V2I32 &lhs, int32_t rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2I32 &operator-=(DN_V2I32 &lhs, DN_V2I32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V2I32 &operator+=(DN_V2I32 &lhs, DN_V2I32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_V2I32 DN_V2I32_Min(DN_V2I32 a, DN_V2I32 b) { DN_V2I32 result = DN_V2I32_Init2N(DN_MIN(a.x, b.x), DN_MIN(a.y, b.y)); return result; } DN_API DN_V2I32 DN_V2I32_Max(DN_V2I32 a, DN_V2I32 b) { DN_V2I32 result = DN_V2I32_Init2N(DN_MAX(a.x, b.x), DN_MAX(a.y, b.y)); return result; } DN_API DN_V2I32 DN_V2I32_Abs(DN_V2I32 a) { DN_V2I32 result = DN_V2I32_Init2N(DN_ABS(a.x), DN_ABS(a.y)); return result; } // NOTE: DN_V2U16 DN_API bool operator!=(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = !(lhs == rhs); return result; } DN_API bool operator==(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = (lhs.x == rhs.x) && (lhs.y == rhs.y); return result; } DN_API bool operator>=(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = (lhs.x >= rhs.x) && (lhs.y >= rhs.y); return result; } DN_API bool operator<=(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = (lhs.x <= rhs.x) && (lhs.y <= rhs.y); return result; } DN_API bool operator<(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = (lhs.x < rhs.x) && (lhs.y < rhs.y); return result; } DN_API bool operator>(DN_V2U16 lhs, DN_V2U16 rhs) { bool result = (lhs.x > rhs.x) && (lhs.y > rhs.y); return result; } DN_API DN_V2U16 operator-(DN_V2U16 lhs, DN_V2U16 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x - rhs.x, lhs.y - rhs.y); return result; } DN_API DN_V2U16 operator+(DN_V2U16 lhs, DN_V2U16 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x + rhs.x, lhs.y + rhs.y); return result; } DN_API DN_V2U16 operator*(DN_V2U16 lhs, DN_V2U16 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x * rhs.x, lhs.y * rhs.y); return result; } DN_API DN_V2U16 operator*(DN_V2U16 lhs, DN_F32 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } DN_API DN_V2U16 operator*(DN_V2U16 lhs, int32_t rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } DN_API DN_V2U16 operator/(DN_V2U16 lhs, DN_V2U16 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x / rhs.x, lhs.y / rhs.y); return result; } DN_API DN_V2U16 operator/(DN_V2U16 lhs, DN_F32 rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } DN_API DN_V2U16 operator/(DN_V2U16 lhs, int32_t rhs) { DN_V2U16 result = DN_V2U16_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } DN_API DN_V2U16 &operator*=(DN_V2U16 &lhs, DN_V2U16 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2U16 &operator*=(DN_V2U16 &lhs, DN_F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2U16 &operator*=(DN_V2U16 &lhs, int32_t rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2U16 &operator/=(DN_V2U16 &lhs, DN_V2U16 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2U16 &operator/=(DN_V2U16 &lhs, DN_F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2U16 &operator/=(DN_V2U16 &lhs, int32_t rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2U16 &operator-=(DN_V2U16 &lhs, DN_V2U16 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V2U16 &operator+=(DN_V2U16 &lhs, DN_V2U16 rhs) { lhs = lhs + rhs; return lhs; } // NOTE: DN_V2 DN_API bool operator!=(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = !(lhs == rhs); return result; } DN_API bool operator==(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = (lhs.x == rhs.x) && (lhs.y == rhs.y); return result; } DN_API bool operator>=(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = (lhs.x >= rhs.x) && (lhs.y >= rhs.y); return result; } DN_API bool operator<=(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = (lhs.x <= rhs.x) && (lhs.y <= rhs.y); return result; } DN_API bool operator<(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = (lhs.x < rhs.x) && (lhs.y < rhs.y); return result; } DN_API bool operator>(DN_V2F32 lhs, DN_V2F32 rhs) { bool result = (lhs.x > rhs.x) && (lhs.y > rhs.y); return result; } // NOTE: DN_V2F32 operator- ////////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 operator-(DN_V2F32 lhs) { DN_V2F32 result = DN_V2F32_Init2N(-lhs.x, -lhs.y); return result; } DN_API DN_V2F32 operator-(DN_V2F32 lhs, DN_V2F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x - rhs.x, lhs.y - rhs.y); return result; } DN_API DN_V2F32 operator-(DN_V2F32 lhs, DN_V2I32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x - rhs.x, lhs.y - rhs.y); return result; } DN_API DN_V2F32 operator-(DN_V2F32 lhs, DN_F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x - rhs, lhs.y - rhs); return result; } DN_API DN_V2F32 operator-(DN_V2F32 lhs, int32_t rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x - rhs, lhs.y - rhs); return result; } // NOTE: DN_V2F32 operator+ ////////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 operator+(DN_V2F32 lhs, DN_V2F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x + rhs.x, lhs.y + rhs.y); return result; } DN_API DN_V2F32 operator+(DN_V2F32 lhs, DN_V2I32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x + rhs.x, lhs.y + rhs.y); return result; } DN_API DN_V2F32 operator+(DN_V2F32 lhs, DN_F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x + rhs, lhs.y + rhs); return result; } DN_API DN_V2F32 operator+(DN_V2F32 lhs, int32_t rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x + rhs, lhs.y + rhs); return result; } // NOTE: DN_V2F32 operator* ////////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 operator*(DN_V2F32 lhs, DN_V2F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x * rhs.x, lhs.y * rhs.y); return result; } DN_API DN_V2F32 operator*(DN_V2F32 lhs, DN_V2I32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x * rhs.x, lhs.y * rhs.y); return result; } DN_API DN_V2F32 operator*(DN_V2F32 lhs, DN_F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } DN_API DN_V2F32 operator*(DN_V2F32 lhs, int32_t rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x * rhs, lhs.y * rhs); return result; } // NOTE: DN_V2F32 operator/ ////////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 operator/(DN_V2F32 lhs, DN_V2F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x / rhs.x, lhs.y / rhs.y); return result; } DN_API DN_V2F32 operator/(DN_V2F32 lhs, DN_V2I32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x / rhs.x, lhs.y / rhs.y); return result; } DN_API DN_V2F32 operator/(DN_V2F32 lhs, DN_F32 rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } DN_API DN_V2F32 operator/(DN_V2F32 lhs, int32_t rhs) { DN_V2F32 result = DN_V2F32_Init2N(lhs.x / rhs, lhs.y / rhs); return result; } // NOTE: DN_V2F32 operator*/ ///////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 &operator*=(DN_V2F32 &lhs, DN_V2F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2F32 &operator*=(DN_V2F32 &lhs, DN_V2I32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2F32 &operator*=(DN_V2F32 &lhs, DN_F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V2F32 &operator*=(DN_V2F32 &lhs, int32_t rhs) { lhs = lhs * rhs; return lhs; } // NOTE: DN_V2F32 operator// ///////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 &operator/=(DN_V2F32 &lhs, DN_V2F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2F32 &operator/=(DN_V2F32 &lhs, DN_V2I32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2F32 &operator/=(DN_V2F32 &lhs, DN_F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V2F32 &operator/=(DN_V2F32 &lhs, int32_t rhs) { lhs = lhs / rhs; return lhs; } // NOTE: DN_V2F32 operator-/ ///////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 &operator-=(DN_V2F32 &lhs, DN_V2F32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V2F32 &operator-=(DN_V2F32 &lhs, DN_V2I32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V2F32 &operator-=(DN_V2F32 &lhs, DN_F32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V2F32 &operator-=(DN_V2F32 &lhs, int32_t rhs) { lhs = lhs - rhs; return lhs; } // NOTE: DN_V2F32 operator+/ ///////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 &operator+=(DN_V2F32 &lhs, DN_V2F32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_V2F32 &operator+=(DN_V2F32 &lhs, DN_V2I32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_V2F32 &operator+=(DN_V2F32 &lhs, DN_F32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_V2F32 &operator+=(DN_V2F32 &lhs, int32_t rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_V2F32 DN_V2F32_Min(DN_V2F32 a, DN_V2F32 b) { DN_V2F32 result = DN_V2F32_Init2N(DN_MIN(a.x, b.x), DN_MIN(a.y, b.y)); return result; } DN_API DN_V2F32 DN_V2F32_Max(DN_V2F32 a, DN_V2F32 b) { DN_V2F32 result = DN_V2F32_Init2N(DN_MAX(a.x, b.x), DN_MAX(a.y, b.y)); return result; } DN_API DN_V2F32 DN_V2F32_Abs(DN_V2F32 a) { DN_V2F32 result = DN_V2F32_Init2N(DN_ABS(a.x), DN_ABS(a.y)); return result; } DN_API DN_F32 DN_V2F32_Dot(DN_V2F32 a, DN_V2F32 b) { // NOTE: Scalar projection of B onto A ///////////////////////////////////////////////////////// // // Scalar projection calculates the signed distance between `b` and `a` // where `a` is a unit vector then, the dot product calculates the projection // of `b` onto the infinite line that the direction of `a` represents. This // calculation is the signed distance. // // signed_distance = dot_product(a, b) = (a.x * b.x) + (a.y * b.y) // // Y // ^ b // | /| // | / | // | / | // | / | Projection // | / | // |/ V // +--->--------> X // . a . // . . // |------| <- Calculated signed distance // // The signed-ness of the result indicates the relationship: // // Distance <0 means `b` is behind `a` // Distance >0 means `b` is in-front of `a` // Distance ==0 means `b` is perpendicular to `a` // // If `a` is not normalized then the signed-ness of the result still holds // however result no longer represents the actual distance between the // 2 objects. One of the vectors must be normalised (e.g. turned into a unit // vector). // // NOTE: Vector projection ///////////////////////////////////////////////////////////////////// // // Vector projection calculates the exact X,Y coordinates of where `b` meets // `a` when it was projected. This is calculated by multipying the // 'scalar projection' result by the unit vector of `a` // // vector_projection = a * signed_distance = a * dot_product(a, b) DN_F32 result = (a.x * b.x) + (a.y * b.y); return result; } DN_API DN_F32 DN_V2F32_LengthSq_V2x2(DN_V2F32 lhs, DN_V2F32 rhs) { // NOTE: Pythagoras's theorem (a^2 + b^2 = c^2) without the square root DN_F32 a = rhs.x - lhs.x; DN_F32 b = rhs.y - lhs.y; DN_F32 c_squared = DN_SQUARED(a) + DN_SQUARED(b); DN_F32 result = c_squared; return result; } DN_API DN_F32 DN_V2F32_Length_V2x2(DN_V2F32 lhs, DN_V2F32 rhs) { DN_F32 result_squared = DN_V2F32_LengthSq_V2x2(lhs, rhs); DN_F32 result = DN_SQRTF(result_squared); return result; } DN_API DN_F32 DN_V2F32_LengthSq(DN_V2F32 lhs) { // NOTE: Pythagoras's theorem without the square root DN_F32 c_squared = DN_SQUARED(lhs.x) + DN_SQUARED(lhs.y); DN_F32 result = c_squared; return result; } DN_API DN_F32 DN_V2F32_Length(DN_V2F32 lhs) { DN_F32 c_squared = DN_V2F32_LengthSq(lhs); DN_F32 result = DN_SQRTF(c_squared); return result; } DN_API DN_V2F32 DN_V2F32_Normalise(DN_V2F32 a) { DN_F32 length = DN_V2F32_Length(a); DN_V2F32 result = a / length; return result; } DN_API DN_V2F32 DN_V2F32_Perpendicular(DN_V2F32 a) { // NOTE: Matrix form of a 2D vector can be defined as // // x' = x cos(t) - y sin(t) // y' = x sin(t) + y cos(t) // // Calculate a line perpendicular to a vector means rotating the vector by // 90 degrees // // x' = x cos(90) - y sin(90) // y' = x sin(90) + y cos(90) // // Where `cos(90) = 0` and `sin(90) = 1` then, // // x' = -y // y' = +x DN_V2F32 result = DN_V2F32_Init2N(-a.y, a.x); return result; } DN_API DN_V2F32 DN_V2F32_Reflect(DN_V2F32 in, DN_V2F32 surface) { DN_V2F32 normal = DN_V2F32_Perpendicular(surface); DN_V2F32 normal_norm = DN_V2F32_Normalise(normal); DN_F32 signed_dist = DN_V2F32_Dot(in, normal_norm); DN_V2F32 result = DN_V2F32_Init2N(in.x, in.y + (-signed_dist * 2.f)); return result; } DN_API DN_F32 DN_V2F32_Area(DN_V2F32 a) { DN_F32 result = a.w * a.h; return result; } #endif // !defined(DN_NO_V2) #if !defined(DN_NO_V3) // NOTE: [$VEC3] Vector3 /////////////////////////////////////////////////////////////////////////// DN_API bool operator!=(DN_V3F32 lhs, DN_V3F32 rhs) { bool result = !(lhs == rhs); return result; } DN_API bool operator==(DN_V3F32 lhs, DN_V3F32 rhs) { bool result = (lhs.x == rhs.x) && (lhs.y == rhs.y) && (lhs.z == rhs.z); return result; } DN_API bool operator>=(DN_V3F32 lhs, DN_V3F32 rhs) { bool result = (lhs.x >= rhs.x) && (lhs.y >= rhs.y) && (lhs.z >= rhs.z); return result; } DN_API bool operator<=(DN_V3F32 lhs, DN_V3F32 rhs) { bool result = (lhs.x <= rhs.x) && (lhs.y <= rhs.y) && (lhs.z <= rhs.z); return result; } DN_API bool operator< (DN_V3F32 lhs, DN_V3F32 rhs) { bool result = (lhs.x < rhs.x) && (lhs.y < rhs.y) && (lhs.z < rhs.z); return result; } DN_API bool operator>(DN_V3F32 lhs, DN_V3F32 rhs) { bool result = (lhs.x > rhs.x) && (lhs.y > rhs.y) && (lhs.z > rhs.z); return result; } DN_API DN_V3F32 operator-(DN_V3F32 lhs, DN_V3F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z); return result; } DN_API DN_V3F32 operator-(DN_V3F32 lhs) { DN_V3F32 result = DN_V3F32_Init3F32(-lhs.x, -lhs.y, -lhs.z); return result; } DN_API DN_V3F32 operator+(DN_V3F32 lhs, DN_V3F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z); return result; } DN_API DN_V3F32 operator*(DN_V3F32 lhs, DN_V3F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x * rhs.x, lhs.y * rhs.y, lhs.z * rhs.z); return result; } DN_API DN_V3F32 operator*(DN_V3F32 lhs, DN_F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs); return result; } DN_API DN_V3F32 operator*(DN_V3F32 lhs, int32_t rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs); return result; } DN_API DN_V3F32 operator/(DN_V3F32 lhs, DN_V3F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x / rhs.x, lhs.y / rhs.y, lhs.z / rhs.z); return result; } DN_API DN_V3F32 operator/(DN_V3F32 lhs, DN_F32 rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x / rhs, lhs.y / rhs, lhs.z / rhs); return result; } DN_API DN_V3F32 operator/(DN_V3F32 lhs, int32_t rhs) { DN_V3F32 result = DN_V3F32_Init3F32(lhs.x / rhs, lhs.y / rhs, lhs.z / rhs); return result; } DN_API DN_V3F32 &operator*=(DN_V3F32 &lhs, DN_V3F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V3F32 &operator*=(DN_V3F32 &lhs, DN_F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V3F32 &operator*=(DN_V3F32 &lhs, int32_t rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V3F32 &operator/=(DN_V3F32 &lhs, DN_V3F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V3F32 &operator/=(DN_V3F32 &lhs, DN_F32 rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V3F32 &operator/=(DN_V3F32 &lhs, int32_t rhs) { lhs = lhs / rhs; return lhs; } DN_API DN_V3F32 &operator-=(DN_V3F32 &lhs, DN_V3F32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V3F32 &operator+=(DN_V3F32 &lhs, DN_V3F32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_F32 DN_V3_LengthSq(DN_V3F32 a) { DN_F32 result = DN_SQUARED(a.x) + DN_SQUARED(a.y) + DN_SQUARED(a.z); return result; } DN_API DN_F32 DN_V3_Length(DN_V3F32 a) { DN_F32 length_sq = DN_SQUARED(a.x) + DN_SQUARED(a.y) + DN_SQUARED(a.z); DN_F32 result = DN_SQRTF(length_sq); return result; } DN_API DN_V3F32 DN_V3_Normalise(DN_V3F32 a) { DN_F32 length = DN_V3_Length(a); DN_V3F32 result = a / length; return result; } #endif // !defined(DN_NO_V3) #if !defined(DN_NO_V4) // NOTE: [$VEC4] Vector4 /////////////////////////////////////////////////////////////////////////// DN_API bool operator==(DN_V4F32 lhs, DN_V4F32 rhs) { bool result = (lhs.x == rhs.x) && (lhs.y == rhs.y) && (lhs.z == rhs.z) && (lhs.w == rhs.w); return result; } DN_API bool operator!=(DN_V4F32 lhs, DN_V4F32 rhs) { bool result = !(lhs == rhs); return result; } DN_API bool operator>=(DN_V4F32 lhs, DN_V4F32 rhs) { bool result = (lhs.x >= rhs.x) && (lhs.y >= rhs.y) && (lhs.z >= rhs.z) && (lhs.w >= rhs.w); return result; } DN_API bool operator<=(DN_V4F32 lhs, DN_V4F32 rhs) { bool result = (lhs.x <= rhs.x) && (lhs.y <= rhs.y) && (lhs.z <= rhs.z) && (lhs.w <= rhs.w); return result; } DN_API bool operator< (DN_V4F32 lhs, DN_V4F32 rhs) { bool result = (lhs.x < rhs.x) && (lhs.y < rhs.y) && (lhs.z < rhs.z) && (lhs.w < rhs.w); return result; } DN_API bool operator>(DN_V4F32 lhs, DN_V4F32 rhs) { bool result = (lhs.x > rhs.x) && (lhs.y > rhs.y) && (lhs.z > rhs.z) && (lhs.w > rhs.w); return result; } DN_API DN_V4F32 operator-(DN_V4F32 lhs, DN_V4F32 rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z, lhs.w - rhs.w); return result; } DN_API DN_V4F32 operator-(DN_V4F32 lhs) { DN_V4F32 result = DN_V4F32_Init4N(-lhs.x, -lhs.y, -lhs.z, -lhs.w); return result; } DN_API DN_V4F32 operator+(DN_V4F32 lhs, DN_V4F32 rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z, lhs.w + rhs.w); return result; } DN_API DN_V4F32 operator* (DN_V4F32 lhs, DN_V4F32 rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x * rhs.x, lhs.y * rhs.y, lhs.z * rhs.z, lhs.w * rhs.w); return result; } DN_API DN_V4F32 operator*(DN_V4F32 lhs, DN_F32 rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs, lhs.w * rhs); return result; } DN_API DN_V4F32 operator*(DN_V4F32 lhs, int32_t rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x * rhs, lhs.y * rhs, lhs.z * rhs, lhs.w * rhs); return result; } DN_API DN_V4F32 operator/(DN_V4F32 lhs, DN_F32 rhs) { DN_V4F32 result = DN_V4F32_Init4N(lhs.x / rhs, lhs.y / rhs, lhs.z / rhs, lhs.w / rhs); return result; } DN_API DN_V4F32 &operator*=(DN_V4F32 &lhs, DN_V4F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V4F32 &operator*=(DN_V4F32 &lhs, DN_F32 rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V4F32 &operator*=(DN_V4F32 &lhs, int32_t rhs) { lhs = lhs * rhs; return lhs; } DN_API DN_V4F32 &operator-=(DN_V4F32 &lhs, DN_V4F32 rhs) { lhs = lhs - rhs; return lhs; } DN_API DN_V4F32 &operator+=(DN_V4F32 &lhs, DN_V4F32 rhs) { lhs = lhs + rhs; return lhs; } DN_API DN_F32 DN_V4F32Dot(DN_V4F32 a, DN_V4F32 b) { DN_F32 result = (a.x * b.x) + (a.y * b.y) + (a.z * b.z) + (a.w * b.w); return result; } #endif // !defined(DN_NO_V4) #if !defined(DN_NO_M4) // NOTE: [$MAT4] DN_M4 //////////////////////////////////////////////////////////////////////////// DN_API DN_M4 DN_M4_Identity() { DN_M4 result = {{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, }}; return result; } DN_API DN_M4 DN_M4_ScaleF(DN_F32 x, DN_F32 y, DN_F32 z) { DN_M4 result = {{ {x, 0, 0, 0}, {0, y, 0, 0}, {0, 0, z, 0}, {0, 0, 0, 1}, }}; return result; } DN_API DN_M4 DN_M4_Scale(DN_V3F32 xyz) { DN_M4 result = {{ {xyz.x, 0, 0, 0}, {0, xyz.y, 0, 0}, {0, 0, xyz.z, 0}, {0, 0, 0, 1}, }}; return result; } DN_API DN_M4 DN_M4_TranslateF(DN_F32 x, DN_F32 y, DN_F32 z) { DN_M4 result = {{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {x, y, z, 1}, }}; return result; } DN_API DN_M4 DN_M4_Translate(DN_V3F32 xyz) { DN_M4 result = {{ {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {xyz.x, xyz.y, xyz.z, 1}, }}; return result; } DN_API DN_M4 DN_M4_Transpose(DN_M4 mat) { DN_M4 result = {}; for (int col = 0; col < 4; col++) for (int row = 0; row < 4; row++) result.columns[col][row] = mat.columns[row][col]; return result; } DN_API DN_M4 DN_M4_Rotate(DN_V3F32 axis01, DN_F32 radians) { DN_ASSERTF(DN_ABS(DN_V3_Length(axis01) - 1.f) <= 0.01f, "Rotation axis must be normalised, length = %f", DN_V3_Length(axis01)); DN_F32 sin = DN_SINF(radians); DN_F32 cos = DN_COSF(radians); DN_F32 one_minus_cos = 1.f - cos; DN_F32 x = axis01.x; DN_F32 y = axis01.y; DN_F32 z = axis01.z; DN_F32 x2 = DN_SQUARED(x); DN_F32 y2 = DN_SQUARED(y); DN_F32 z2 = DN_SQUARED(z); DN_M4 result = {{ {cos + x2*one_minus_cos, y*x*one_minus_cos + z*sin, z*x*one_minus_cos - y*sin, 0}, // Col 1 {x*y*one_minus_cos - z*sin, cos + y2*one_minus_cos, z*y*one_minus_cos + x*sin, 0}, // Col 2 {x*z*one_minus_cos + y*sin, y*z*one_minus_cos - x*sin, cos + z2*one_minus_cos, 0}, // Col 3 {0, 0, 0, 1}, // Col 4 }}; return result; } DN_API DN_M4 DN_M4_Orthographic(DN_F32 left, DN_F32 right, DN_F32 bottom, DN_F32 top, DN_F32 z_near, DN_F32 z_far) { // NOTE: Here is the matrix in column major for readability. Below it's // transposed due to how you have to declare column major matrices in C/C++. // // m = [2/r-l, 0, 0, -1*(r+l)/(r-l)] // [0, 2/t-b, 0, 1*(t+b)/(t-b)] // [0, 0, -2/f-n, -1*(f+n)/(f-n)] // [0, 0, 0, 1 ] DN_M4 result = {{ {2.f / (right - left), 0.f, 0.f, 0.f}, {0.f, 2.f / (top - bottom), 0.f, 0.f}, {0.f, 0.f, -2.f / (z_far - z_near), 0.f}, {(-1.f * (right + left)) / (right - left), (-1.f * (top + bottom)) / (top - bottom), (-1.f * (z_far + z_near)) / (z_far - z_near), 1.f}, }}; return result; } DN_API DN_M4 DN_M4_Perspective(DN_F32 fov /*radians*/, DN_F32 aspect, DN_F32 z_near, DN_F32 z_far) { DN_F32 tan_fov = DN_TANF(fov / 2.f); DN_M4 result = {{ {1.f / (aspect * tan_fov), 0.f, 0.f, 0.f}, {0, 1.f / tan_fov, 0.f, 0.f}, {0.f, 0.f, (z_near + z_far) / (z_near - z_far), -1.f}, {0.f, 0.f, (2.f * z_near * z_far)/(z_near - z_far), 0.f}, }}; return result; } DN_API DN_M4 DN_M4_Add(DN_M4 lhs, DN_M4 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] + rhs.columns[col][it]; } return result; } DN_API DN_M4 DN_M4_Sub(DN_M4 lhs, DN_M4 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] - rhs.columns[col][it]; } return result; } DN_API DN_M4 DN_M4_Mul(DN_M4 lhs, DN_M4 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int row = 0; row < 4; row++) { DN_F32 sum = 0; for (int f32_it = 0; f32_it < 4; f32_it++) sum += lhs.columns[f32_it][row] * rhs.columns[col][f32_it]; result.columns[col][row] = sum; } } return result; } DN_API DN_M4 DN_M4_Div(DN_M4 lhs, DN_M4 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] / rhs.columns[col][it]; } return result; } DN_API DN_M4 DN_M4_AddF(DN_M4 lhs, DN_F32 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] + rhs; } return result; } DN_API DN_M4 DN_M4_SubF(DN_M4 lhs, DN_F32 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] - rhs; } return result; } DN_API DN_M4 DN_M4_MulF(DN_M4 lhs, DN_F32 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] * rhs; } return result; } DN_API DN_M4 DN_M4_DivF(DN_M4 lhs, DN_F32 rhs) { DN_M4 result; for (int col = 0; col < 4; col++) { for (int it = 0; it < 4; it++) result.columns[col][it] = lhs.columns[col][it] / rhs; } return result; } #if !defined(DN_NO_FSTR8) DN_API DN_FStr8<256> DN_M4_ColumnMajorString(DN_M4 mat) { DN_FStr8<256> result = {}; for (int row = 0; row < 4; row++) { for (int it = 0; it < 4; it++) { if (it == 0) DN_FStr8_Add(&result, DN_STR8("|")); DN_FStr8_AddF(&result, "%.5f", mat.columns[it][row]); if (it != 3) DN_FStr8_Add(&result, DN_STR8(", ")); else DN_FStr8_Add(&result, DN_STR8("|\n")); } } return result; } #endif #endif // !defined(DN_M4) // NOTE: [$M2x3] DN_M2x3 ////////////////////////////////////////////////////////////////////////// DN_API bool operator==(DN_M2x3 const &lhs, DN_M2x3 const &rhs) { bool result = DN_MEMCMP(lhs.e, rhs.e, sizeof(lhs.e[0]) * DN_ARRAY_UCOUNT(lhs.e)) == 0; return result; } DN_API bool operator!=(DN_M2x3 const &lhs, DN_M2x3 const &rhs) { bool result = !(lhs == rhs); return result; } DN_API DN_M2x3 DN_M2x3_Identity() { DN_M2x3 result = {{ 1, 0, 0, 0, 1, 0, }}; return result; } DN_API DN_M2x3 DN_M2x3_Translate(DN_V2F32 offset) { DN_M2x3 result = {{ 1, 0, offset.x, 0, 1, offset.y, }}; return result; } DN_API DN_M2x3 DN_M2x3_Scale(DN_V2F32 scale) { DN_M2x3 result = {{ scale.x, 0, 0, 0, scale.y, 0, }}; return result; } DN_API DN_M2x3 DN_M2x3_Rotate(DN_F32 radians) { DN_M2x3 result = {{ DN_COSF(radians), DN_SINF(radians), 0, -DN_SINF(radians), DN_COSF(radians), 0, }}; return result; } DN_API DN_M2x3 DN_M2x3_Mul(DN_M2x3 m1, DN_M2x3 m2) { // NOTE: Ordinarily you can't multiply M2x3 with M2x3 because column count // (3) != row count (2). We pretend we have two 3x3 matrices with the last // row set to [0 0 1] and perform a 3x3 matrix multiply. // // | (0)a (1)b (2)c | | (0)g (1)h (2)i | // | (3)d (4)e (5)f | x | (3)j (4)k (5)l | // | (6)0 (7)0 (8)1 | | (6)0 (7)0 (8)1 | DN_M2x3 result = {{ m1.e[0]*m2.e[0] + m1.e[1]*m2.e[3], // a*g + b*j + c*0[omitted], m1.e[0]*m2.e[1] + m1.e[1]*m2.e[4], // a*h + b*k + c*0[omitted], m1.e[0]*m2.e[2] + m1.e[1]*m2.e[5] + m1.e[2], // a*i + b*l + c*1, m1.e[3]*m2.e[0] + m1.e[4]*m2.e[3], // d*g + e*j + f*0[omitted], m1.e[3]*m2.e[1] + m1.e[4]*m2.e[4], // d*h + e*k + f*0[omitted], m1.e[3]*m2.e[2] + m1.e[4]*m2.e[5] + m1.e[5], // d*i + e*l + f*1, }}; return result; } DN_API DN_V2F32 DN_M2x3_Mul2F32(DN_M2x3 m1, DN_F32 x, DN_F32 y) { // NOTE: Ordinarily you can't multiply M2x3 with V2 because column count (3) // != row count (2). We pretend we have a V3 with `z` set to `1`. // // | (0)a (1)b (2)c | | x | // | (3)d (4)e (5)f | x | y | // | 1 | DN_V2F32 result = {{ m1.e[0]*x + m1.e[1]*y + m1.e[2], // a*x + b*y + c*1 m1.e[3]*x + m1.e[4]*y + m1.e[5], // d*x + e*y + f*1 }}; return result; } DN_API DN_V2F32 DN_M2x3_MulV2(DN_M2x3 m1, DN_V2F32 v2) { DN_V2F32 result = DN_M2x3_Mul2F32(m1, v2.x, v2.y); return result; } #if !defined(DN_NO_RECT) // NOTE: [$RECT] DN_Rect ////////////////////////////////////////////////////////////////////////// DN_API bool operator==(const DN_Rect& lhs, const DN_Rect& rhs) { bool result = (lhs.pos == rhs.pos) && (lhs.size == rhs.size); return result; } DN_API DN_V2F32 DN_Rect_Center(DN_Rect rect) { DN_V2F32 result = rect.pos + (rect.size * .5f); return result; } DN_API bool DN_Rect_ContainsPoint(DN_Rect rect, DN_V2F32 p) { DN_V2F32 min = rect.pos; DN_V2F32 max = rect.pos + rect.size; bool result = (p.x >= min.x && p.x <= max.x && p.y >= min.y && p.y <= max.y); return result; } DN_API bool DN_Rect_ContainsRect(DN_Rect a, DN_Rect b) { DN_V2F32 a_min = a.pos; DN_V2F32 a_max = a.pos + a.size; DN_V2F32 b_min = b.pos; DN_V2F32 b_max = b.pos + b.size; bool result = (b_min >= a_min && b_max <= a_max); return result; } DN_API DN_Rect DN_Rect_Expand(DN_Rect a, DN_F32 amount) { DN_Rect result = a; result.pos -= amount; result.size += (amount * 2.f); return result; } DN_API DN_Rect DN_Rect_ExpandV2(DN_Rect a, DN_V2F32 amount) { DN_Rect result = a; result.pos -= amount; result.size += (amount * 2.f); return result; } DN_API bool DN_Rect_Intersects(DN_Rect a, DN_Rect b) { DN_V2F32 a_min = a.pos; DN_V2F32 a_max = a.pos + a.size; DN_V2F32 b_min = b.pos; DN_V2F32 b_max = b.pos + b.size; bool result = (a_min.x <= b_max.x && a_max.x >= b_min.x) && (a_min.y <= b_max.y && a_max.y >= b_min.y); return result; } DN_API DN_Rect DN_Rect_Intersection(DN_Rect a, DN_Rect b) { DN_Rect result = DN_Rect_Init2V2(a.pos, DN_V2F32_Init1N(0)); if (DN_Rect_Intersects(a, b)) { DN_V2F32 a_min = a.pos; DN_V2F32 a_max = a.pos + a.size; DN_V2F32 b_min = b.pos; DN_V2F32 b_max = b.pos + b.size; DN_V2F32 min = {}; DN_V2F32 max = {}; min.x = DN_MAX(a_min.x, b_min.x); min.y = DN_MAX(a_min.y, b_min.y); max.x = DN_MIN(a_max.x, b_max.x); max.y = DN_MIN(a_max.y, b_max.y); result = DN_Rect_Init2V2(min, max - min); } return result; } DN_API DN_Rect DN_Rect_Union(DN_Rect a, DN_Rect b) { DN_V2F32 a_min = a.pos; DN_V2F32 a_max = a.pos + a.size; DN_V2F32 b_min = b.pos; DN_V2F32 b_max = b.pos + b.size; DN_V2F32 min, max; min.x = DN_MIN(a_min.x, b_min.x); min.y = DN_MIN(a_min.y, b_min.y); max.x = DN_MAX(a_max.x, b_max.x); max.y = DN_MAX(a_max.y, b_max.y); DN_Rect result = DN_Rect_Init2V2(min, max - min); return result; } DN_API DN_RectMinMax DN_Rect_MinMax(DN_Rect a) { DN_RectMinMax result = {}; result.min = a.pos; result.max = a.pos + a.size; return result; } DN_API DN_F32 DN_Rect_Area(DN_Rect a) { DN_F32 result = a.size.w * a.size.h; return result; } DN_API DN_Rect DN_Rect_CutLeftClip(DN_Rect *rect, DN_F32 amount, DN_RectCutClip clip) { DN_F32 min_x = rect->pos.x; DN_F32 max_x = rect->pos.x + rect->size.w; DN_F32 result_max_x = min_x + amount; if (clip) result_max_x = DN_MIN(result_max_x, max_x); DN_Rect result = DN_Rect_Init4N(min_x, rect->pos.y, result_max_x - min_x, rect->size.h); rect->pos.x = result_max_x; rect->size.w = max_x - result_max_x; return result; } DN_API DN_Rect DN_Rect_CutRightClip(DN_Rect *rect, DN_F32 amount, DN_RectCutClip clip) { DN_F32 min_x = rect->pos.x; DN_F32 max_x = rect->pos.x + rect->size.w; DN_F32 result_min_x = max_x - amount; if (clip) result_min_x = DN_MAX(result_min_x, 0); DN_Rect result = DN_Rect_Init4N(result_min_x, rect->pos.y, max_x - result_min_x, rect->size.h); rect->size.w = result_min_x - min_x; return result; } DN_API DN_Rect DN_Rect_CutTopClip(DN_Rect *rect, DN_F32 amount, DN_RectCutClip clip) { DN_F32 min_y = rect->pos.y; DN_F32 max_y = rect->pos.y + rect->size.h; DN_F32 result_max_y = min_y + amount; if (clip) result_max_y = DN_MIN(result_max_y, max_y); DN_Rect result = DN_Rect_Init4N(rect->pos.x, min_y, rect->size.w, result_max_y - min_y); rect->pos.y = result_max_y; rect->size.h = max_y - result_max_y; return result; } DN_API DN_Rect DN_Rect_CutBottomClip(DN_Rect *rect, DN_F32 amount, DN_RectCutClip clip) { DN_F32 min_y = rect->pos.y; DN_F32 max_y = rect->pos.y + rect->size.h; DN_F32 result_min_y = max_y - amount; if (clip) result_min_y = DN_MAX(result_min_y, 0); DN_Rect result = DN_Rect_Init4N(rect->pos.x, result_min_y, rect->size.w, max_y - result_min_y); rect->size.h = result_min_y - min_y; return result; } DN_API DN_Rect DN_RectCut_Cut(DN_RectCut rect_cut, DN_V2F32 size, DN_RectCutClip clip) { DN_Rect result = {}; if (rect_cut.rect) { switch (rect_cut.side) { case DN_RectCutSide_Left: result = DN_Rect_CutLeftClip(rect_cut.rect, size.w, clip); break; case DN_RectCutSide_Right: result = DN_Rect_CutRightClip(rect_cut.rect, size.w, clip); break; case DN_RectCutSide_Top: result = DN_Rect_CutTopClip(rect_cut.rect, size.h, clip); break; case DN_RectCutSide_Bottom: result = DN_Rect_CutBottomClip(rect_cut.rect, size.h, clip); break; } } return result; } DN_API DN_V2F32 DN_Rect_InterpolatedPoint(DN_Rect rect, DN_V2F32 t01) { DN_V2F32 result = DN_V2F32_Init2N(rect.pos.w + (rect.size.w * t01.x), rect.pos.h + (rect.size.h * t01.y)); return result; } DN_API DN_V2F32 DN_Rect_TopLeft(DN_Rect rect) { DN_V2F32 result = DN_Rect_InterpolatedPoint(rect, DN_V2F32_Init2N(0, 0)); return result; } DN_API DN_V2F32 DN_Rect_TopRight(DN_Rect rect) { DN_V2F32 result = DN_Rect_InterpolatedPoint(rect, DN_V2F32_Init2N(1, 0)); return result; } DN_API DN_V2F32 DN_Rect_BottomLeft(DN_Rect rect) { DN_V2F32 result = DN_Rect_InterpolatedPoint(rect, DN_V2F32_Init2N(0, 1)); return result; } DN_API DN_V2F32 DN_Rect_BottomRight(DN_Rect rect) { DN_V2F32 result = DN_Rect_InterpolatedPoint(rect, DN_V2F32_Init2N(1, 1)); return result; } #endif // !defined(DN_NO_RECT) // NOTE: [$MATH] Raycast /////////////////////////////////////////////////////////////////////////// DN_API DN_RaycastLineIntersectV2Result DN_Raycast_LineIntersectV2(DN_V2F32 origin_a, DN_V2F32 dir_a, DN_V2F32 origin_b, DN_V2F32 dir_b) { // NOTE: Parametric equation of a line // // p = o + (t*d) // // - o is the starting 2d point // - d is the direction of the line // - t is a scalar that scales along the direction of the point // // To determine if a ray intersections a ray, we want to solve // // (o_a + (t_a * d_a)) = (o_b + (t_b * d_b)) // // Where '_a' and '_b' represent the 1st and 2nd point's origin, direction // and 't' components respectively. This is 2 equations with 2 unknowns // (`t_a` and `t_b`) which we can solve for by expressing the equation in // terms of `t_a` and `t_b`. // // Working that math out produces the formula below for 't'. DN_RaycastLineIntersectV2Result result = {}; DN_F32 denominator = ((dir_b.y * dir_a.x) - (dir_b.x * dir_a.y)); if (denominator != 0.0f) { result.t_a = (((origin_a.y - origin_b.y) * dir_b.x) + ((origin_b.x - origin_a.x) * dir_b.y)) / denominator; result.t_b = (((origin_a.y - origin_b.y) * dir_a.x) + ((origin_b.x - origin_a.x) * dir_a.y)) / denominator; result.hit = true; } return result; } // NOTE: [$MATH] Other ///////////////////////////////////////////////////////////////////////////// DN_API DN_V2F32 DN_Lerp_V2F32(DN_V2F32 a, DN_F32 t, DN_V2F32 b) { DN_V2F32 result = {}; result.x = a.x + ((b.x - a.x) * t); result.y = a.y + ((b.y - a.y) * t); return result; } DN_API DN_F32 DN_Lerp_F32(DN_F32 a, DN_F32 t, DN_F32 b) { DN_F32 result = a + ((b - a) * t); return result; }