#define DQN_UTEST_IMPLEMENTATION #include "Standalone/dqn_utest.h" #include // NOTE: Taken from MSDN __cpuid example implementation // https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex?view=msvc-170 #include #include #include #include class Dqn_RefImplCPUReport { // forward declarations class Dqn_RefImplCPUReport_Internal; public: // getters static std::string Vendor(void) { return CPU_Rep.vendor_; } static std::string Brand(void) { return CPU_Rep.brand_; } static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; } static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; } static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; } static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; } static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; } static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; } static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; } static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; } static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; } static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; } static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; } static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; } static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; } static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; } static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; } static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; } static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; } static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; } static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; } static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; } static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; } static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; } static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; } static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; } static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; } static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; } static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; } static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; } static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; } static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; } static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; } static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; } static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; } static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; } static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; } static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; } static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; } static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; } static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; } static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; } static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; } static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; } static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; } static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; } static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; } static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; } static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; } static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; } static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; } static bool RDTSCP(void) { return CPU_Rep.f_81_EDX_[27]; } static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; } static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; } private: static const Dqn_RefImplCPUReport_Internal CPU_Rep; class Dqn_RefImplCPUReport_Internal { public: Dqn_RefImplCPUReport_Internal() : nIds_{ 0 }, nExIds_{ 0 }, isIntel_{ false }, isAMD_{ false }, f_1_ECX_{ 0 }, f_1_EDX_{ 0 }, f_7_EBX_{ 0 }, f_7_ECX_{ 0 }, f_81_ECX_{ 0 }, f_81_EDX_{ 0 }, data_{}, extdata_{} { //int cpuInfo[4] = {-1}; std::array cpui; // Calling __cpuid with 0x0 as the function_id argument // gets the number of the highest valid function ID. __cpuid(cpui.data(), 0); nIds_ = cpui[0]; for (int i = 0; i <= nIds_; ++i) { __cpuidex(cpui.data(), i, 0); data_[dataSize_++] = cpui; } // Capture vendor string char vendor[0x20]; memset(vendor, 0, sizeof(vendor)); *reinterpret_cast(vendor) = data_[0][1]; *reinterpret_cast(vendor + 4) = data_[0][3]; *reinterpret_cast(vendor + 8) = data_[0][2]; vendor_ = vendor; if (vendor_ == "GenuineIntel") { isIntel_ = true; } else if (vendor_ == "AuthenticAMD") { isAMD_ = true; } // load bitset with flags for function 0x00000001 if (nIds_ >= 1) { f_1_ECX_ = data_[1][2]; f_1_EDX_ = data_[1][3]; } // load bitset with flags for function 0x00000007 if (nIds_ >= 7) { f_7_EBX_ = data_[7][1]; f_7_ECX_ = data_[7][2]; } // Calling __cpuid with 0x80000000 as the function_id argument // gets the number of the highest valid extended ID. __cpuid(cpui.data(), 0x80000000); nExIds_ = cpui[0]; char brand[0x40]; memset(brand, 0, sizeof(brand)); for (int i = 0x80000000; i <= nExIds_; ++i) { __cpuidex(cpui.data(), i, 0); extdata_[extdataSize_++] = cpui; } // load bitset with flags for function 0x80000001 if (nExIds_ >= 0x80000001) { f_81_ECX_ = extdata_[1][2]; f_81_EDX_ = extdata_[1][3]; } // Interpret CPU brand string if reported if (nExIds_ >= 0x80000004) { memcpy(brand, extdata_[2].data(), sizeof(cpui)); memcpy(brand + 16, extdata_[3].data(), sizeof(cpui)); memcpy(brand + 32, extdata_[4].data(), sizeof(cpui)); brand_ = brand; } }; int nIds_; int nExIds_; std::string vendor_; std::string brand_; bool isIntel_; bool isAMD_; std::bitset<32> f_1_ECX_; std::bitset<32> f_1_EDX_; std::bitset<32> f_7_EBX_; std::bitset<32> f_7_ECX_; std::bitset<32> f_81_ECX_; std::bitset<32> f_81_EDX_; std::array, 512> data_{}; size_t dataSize_ = 0; std::array, 512> extdata_{}; size_t extdataSize_ = 0; }; }; // Initialize static member data const Dqn_RefImplCPUReport::Dqn_RefImplCPUReport_Internal Dqn_RefImplCPUReport::CPU_Rep; #if 0 static void Dqn_RefImpl_CPUReportDump() // Print out supported instruction set features { auto support_message = [](std::string isa_feature, bool is_supported) { printf("%s %s\n", isa_feature.c_str(), is_supported ? "supported" : "not supported"); }; printf("%s\n", Dqn_RefImplCPUReport::Vendor().c_str()); printf("%s\n", Dqn_RefImplCPUReport::Brand().c_str()); support_message("3DNOW", Dqn_RefImplCPUReport::_3DNOW()); support_message("3DNOWEXT", Dqn_RefImplCPUReport::_3DNOWEXT()); support_message("ABM", Dqn_RefImplCPUReport::ABM()); support_message("ADX", Dqn_RefImplCPUReport::ADX()); support_message("AES", Dqn_RefImplCPUReport::AES()); support_message("AVX", Dqn_RefImplCPUReport::AVX()); support_message("AVX2", Dqn_RefImplCPUReport::AVX2()); support_message("AVX512CD", Dqn_RefImplCPUReport::AVX512CD()); support_message("AVX512ER", Dqn_RefImplCPUReport::AVX512ER()); support_message("AVX512F", Dqn_RefImplCPUReport::AVX512F()); support_message("AVX512PF", Dqn_RefImplCPUReport::AVX512PF()); support_message("BMI1", Dqn_RefImplCPUReport::BMI1()); support_message("BMI2", Dqn_RefImplCPUReport::BMI2()); support_message("CLFSH", Dqn_RefImplCPUReport::CLFSH()); support_message("CMPXCHG16B", Dqn_RefImplCPUReport::CMPXCHG16B()); support_message("CX8", Dqn_RefImplCPUReport::CX8()); support_message("ERMS", Dqn_RefImplCPUReport::ERMS()); support_message("F16C", Dqn_RefImplCPUReport::F16C()); support_message("FMA", Dqn_RefImplCPUReport::FMA()); support_message("FSGSBASE", Dqn_RefImplCPUReport::FSGSBASE()); support_message("FXSR", Dqn_RefImplCPUReport::FXSR()); support_message("HLE", Dqn_RefImplCPUReport::HLE()); support_message("INVPCID", Dqn_RefImplCPUReport::INVPCID()); support_message("LAHF", Dqn_RefImplCPUReport::LAHF()); support_message("LZCNT", Dqn_RefImplCPUReport::LZCNT()); support_message("MMX", Dqn_RefImplCPUReport::MMX()); support_message("MMXEXT", Dqn_RefImplCPUReport::MMXEXT()); support_message("MONITOR", Dqn_RefImplCPUReport::MONITOR()); support_message("MOVBE", Dqn_RefImplCPUReport::MOVBE()); support_message("MSR", Dqn_RefImplCPUReport::MSR()); support_message("OSXSAVE", Dqn_RefImplCPUReport::OSXSAVE()); support_message("PCLMULQDQ", Dqn_RefImplCPUReport::PCLMULQDQ()); support_message("POPCNT", Dqn_RefImplCPUReport::POPCNT()); support_message("PREFETCHWT1", Dqn_RefImplCPUReport::PREFETCHWT1()); support_message("RDRAND", Dqn_RefImplCPUReport::RDRAND()); support_message("RDSEED", Dqn_RefImplCPUReport::RDSEED()); support_message("RDTSCP", Dqn_RefImplCPUReport::RDTSCP()); support_message("RTM", Dqn_RefImplCPUReport::RTM()); support_message("SEP", Dqn_RefImplCPUReport::SEP()); support_message("SHA", Dqn_RefImplCPUReport::SHA()); support_message("SSE", Dqn_RefImplCPUReport::SSE()); support_message("SSE2", Dqn_RefImplCPUReport::SSE2()); support_message("SSE3", Dqn_RefImplCPUReport::SSE3()); support_message("SSE4.1", Dqn_RefImplCPUReport::SSE41()); support_message("SSE4.2", Dqn_RefImplCPUReport::SSE42()); support_message("SSE4a", Dqn_RefImplCPUReport::SSE4a()); support_message("SSSE3", Dqn_RefImplCPUReport::SSSE3()); support_message("SYSCALL", Dqn_RefImplCPUReport::SYSCALL()); support_message("TBM", Dqn_RefImplCPUReport::TBM()); support_message("XOP", Dqn_RefImplCPUReport::XOP()); support_message("XSAVE", Dqn_RefImplCPUReport::XSAVE()); }; #endif static Dqn_UTest Dqn_Test_Base() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_Base") { DQN_UTEST_TEST("Query CPUID") { Dqn_CPUReport cpu_report = Dqn_CPU_Report(); // NOTE: Sanity check our report against MSDN's example //////////////////////////////////////// DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_3DNow) == Dqn_RefImplCPUReport::_3DNOW()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_3DNowExt) == Dqn_RefImplCPUReport::_3DNOWEXT()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_ABM) == Dqn_RefImplCPUReport::ABM()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AES) == Dqn_RefImplCPUReport::AES()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX) == Dqn_RefImplCPUReport::AVX()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX2) == Dqn_RefImplCPUReport::AVX2()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX512CD) == Dqn_RefImplCPUReport::AVX512CD()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX512ER) == Dqn_RefImplCPUReport::AVX512ER()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX512F) == Dqn_RefImplCPUReport::AVX512F()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_AVX512PF) == Dqn_RefImplCPUReport::AVX512PF()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_CMPXCHG16B) == Dqn_RefImplCPUReport::CMPXCHG16B()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_F16C) == Dqn_RefImplCPUReport::F16C()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_FMA) == Dqn_RefImplCPUReport::FMA()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_MMX) == Dqn_RefImplCPUReport::MMX()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_MmxExt) == Dqn_RefImplCPUReport::MMXEXT()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_MONITOR) == Dqn_RefImplCPUReport::MONITOR()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_MOVBE) == Dqn_RefImplCPUReport::MOVBE()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_PCLMULQDQ) == Dqn_RefImplCPUReport::PCLMULQDQ()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_POPCNT) == Dqn_RefImplCPUReport::POPCNT()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_RDRAND) == Dqn_RefImplCPUReport::RDRAND()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_RDSEED) == Dqn_RefImplCPUReport::RDSEED()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_RDTSCP) == Dqn_RefImplCPUReport::RDTSCP()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SHA) == Dqn_RefImplCPUReport::SHA()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE) == Dqn_RefImplCPUReport::SSE()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE2) == Dqn_RefImplCPUReport::SSE2()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE3) == Dqn_RefImplCPUReport::SSE3()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE41) == Dqn_RefImplCPUReport::SSE41()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE42) == Dqn_RefImplCPUReport::SSE42()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSE4A) == Dqn_RefImplCPUReport::SSE4a()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SSSE3) == Dqn_RefImplCPUReport::SSSE3()); // NOTE: Feature flags we haven't bothered detecting yet but are in MSDN's example ///////////// #if 0 DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_ADX) == Dqn_RefImplCPUReport::ADX()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_BMI1) == Dqn_RefImplCPUReport::BMI1()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_BMI2) == Dqn_RefImplCPUReport::BMI2()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_CLFSH) == Dqn_RefImplCPUReport::CLFSH()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_CX8) == Dqn_RefImplCPUReport::CX8()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_ERMS) == Dqn_RefImplCPUReport::ERMS()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_FSGSBASE) == Dqn_RefImplCPUReport::FSGSBASE()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_FXSR) == Dqn_RefImplCPUReport::FXSR()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_HLE) == Dqn_RefImplCPUReport::HLE()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_INVPCID) == Dqn_RefImplCPUReport::INVPCID()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_LAHF) == Dqn_RefImplCPUReport::LAHF()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_LZCNT) == Dqn_RefImplCPUReport::LZCNT()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_MSR) == Dqn_RefImplCPUReport::MSR()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_OSXSAVE) == Dqn_RefImplCPUReport::OSXSAVE()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_PREFETCHWT1) == Dqn_RefImplCPUReport::PREFETCHWT1()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_RTM) == Dqn_RefImplCPUReport::RTM()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SEP) == Dqn_RefImplCPUReport::SEP()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_SYSCALL) == Dqn_RefImplCPUReport::SYSCALL()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_TBM) == Dqn_RefImplCPUReport::TBM()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_XOP) == Dqn_RefImplCPUReport::XOP()); DQN_UTEST_ASSERT(&test, Dqn_CPU_HasFeature(&cpu_report, Dqn_CPUFeature_XSAVE) == Dqn_RefImplCPUReport::XSAVE()); #endif } } return test; } static Dqn_UTest Dqn_Test_Arena() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_Arena") { DQN_UTEST_TEST("Reused memory is zeroed out") { uint8_t alignment = 1; Dqn_usize alloc_size = DQN_KILOBYTES(128); Dqn_Arena arena = {}; DQN_DEFER { Dqn_Arena_Deinit(&arena); }; // NOTE: Allocate 128 kilobytes, fill it with garbage, then reset the arena uintptr_t first_ptr_address = 0; { Dqn_ArenaTempMem temp_mem = Dqn_Arena_TempMemBegin(&arena); void *ptr = Dqn_Arena_Alloc(&arena, alloc_size, alignment, Dqn_ZeroMem_Yes); first_ptr_address = DQN_CAST(uintptr_t)ptr; DQN_MEMSET(ptr, 'z', alloc_size); Dqn_Arena_TempMemEnd(temp_mem); } // NOTE: Reallocate 128 kilobytes char *ptr = DQN_CAST(char *)Dqn_Arena_Alloc(&arena, alloc_size, alignment, Dqn_ZeroMem_Yes); // NOTE: Double check we got the same pointer DQN_UTEST_ASSERT(&test, first_ptr_address == DQN_CAST(uintptr_t)ptr); // NOTE: Check that the bytes are set to 0 for (Dqn_usize i = 0; i < alloc_size; i++) DQN_UTEST_ASSERT(&test, ptr[i] == 0); } DQN_UTEST_TEST("Test arena grows naturally, 1mb + 4mb") { // NOTE: Allocate 1mb, then 4mb, this should force the arena to grow Dqn_Arena arena = Dqn_Arena_InitSize(DQN_MEGABYTES(2), DQN_MEGABYTES(2), Dqn_ArenaFlag_Nil); DQN_DEFER { Dqn_Arena_Deinit(&arena); }; char *ptr_1mb = Dqn_Arena_NewArray(&arena, char, DQN_MEGABYTES(1), Dqn_ZeroMem_Yes); char *ptr_4mb = Dqn_Arena_NewArray(&arena, char, DQN_MEGABYTES(4), Dqn_ZeroMem_Yes); DQN_UTEST_ASSERT(&test, ptr_1mb); DQN_UTEST_ASSERT(&test, ptr_4mb); Dqn_ArenaBlock const *block_4mb_begin = arena.curr; char const *block_4mb_end = DQN_CAST(char *)block_4mb_begin + block_4mb_begin->reserve; Dqn_ArenaBlock const *block_1mb_begin = block_4mb_begin->prev; DQN_UTEST_ASSERTF(&test, block_1mb_begin, "New block should have been allocated"); char const *block_1mb_end = DQN_CAST(char *)block_1mb_begin + block_1mb_begin->reserve; DQN_UTEST_ASSERTF(&test, block_1mb_begin != block_4mb_begin, "New block should have been allocated and linked"); DQN_UTEST_ASSERTF(&test, ptr_1mb >= DQN_CAST(char *)block_1mb_begin && ptr_1mb <= block_1mb_end, "Pointer was not allocated from correct memory block"); DQN_UTEST_ASSERTF(&test, ptr_4mb >= DQN_CAST(char *)block_4mb_begin && ptr_4mb <= block_4mb_end, "Pointer was not allocated from correct memory block"); } DQN_UTEST_TEST("Test arena grows naturally, 1mb, temp memory 4mb") { Dqn_Arena arena = Dqn_Arena_InitSize(DQN_MEGABYTES(2), DQN_MEGABYTES(2), Dqn_ArenaFlag_Nil); DQN_DEFER { Dqn_Arena_Deinit(&arena); }; // NOTE: Allocate 1mb, then 4mb, this should force the arena to grow char *ptr_1mb = DQN_CAST(char *)Dqn_Arena_Alloc(&arena, DQN_MEGABYTES(1), 1 /*align*/, Dqn_ZeroMem_Yes); DQN_UTEST_ASSERT(&test, ptr_1mb); Dqn_ArenaTempMem temp_memory = Dqn_Arena_TempMemBegin(&arena); { char *ptr_4mb = Dqn_Arena_NewArray(&arena, char, DQN_MEGABYTES(4), Dqn_ZeroMem_Yes); DQN_UTEST_ASSERT(&test, ptr_4mb); Dqn_ArenaBlock const *block_4mb_begin = arena.curr; char const *block_4mb_end = DQN_CAST(char *) block_4mb_begin + block_4mb_begin->reserve; Dqn_ArenaBlock const *block_1mb_begin = block_4mb_begin->prev; char const *block_1mb_end = DQN_CAST(char *) block_1mb_begin + block_1mb_begin->reserve; DQN_UTEST_ASSERTF(&test, block_1mb_begin != block_4mb_begin, "New block should have been allocated and linked"); DQN_UTEST_ASSERTF(&test, ptr_1mb >= DQN_CAST(char *)block_1mb_begin && ptr_1mb <= block_1mb_end, "Pointer was not allocated from correct memory block"); DQN_UTEST_ASSERTF(&test, ptr_4mb >= DQN_CAST(char *)block_4mb_begin && ptr_4mb <= block_4mb_end, "Pointer was not allocated from correct memory block"); } Dqn_Arena_TempMemEnd(temp_memory); DQN_UTEST_ASSERT (&test, arena.curr->prev == nullptr); DQN_UTEST_ASSERTF(&test, arena.curr->reserve >= DQN_MEGABYTES(1), "size=%" PRIu64 "MiB (%" PRIu64 "B), expect=%" PRIu64 "B", (arena.curr->reserve / 1024 / 1024), arena.curr->reserve, DQN_MEGABYTES(1)); } } return test; } static Dqn_UTest Dqn_Test_Bin() { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_Bin") { DQN_UTEST_TEST("Convert 0x123") { uint64_t result = Dqn_HexToU64(DQN_STR8("0x123")); DQN_UTEST_ASSERTF(&test, result == 0x123, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert 0xFFFF") { uint64_t result = Dqn_HexToU64(DQN_STR8("0xFFFF")); DQN_UTEST_ASSERTF(&test, result == 0xFFFF, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert FFFF") { uint64_t result = Dqn_HexToU64(DQN_STR8("FFFF")); DQN_UTEST_ASSERTF(&test, result == 0xFFFF, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert abCD") { uint64_t result = Dqn_HexToU64(DQN_STR8("abCD")); DQN_UTEST_ASSERTF(&test, result == 0xabCD, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert 0xabCD") { uint64_t result = Dqn_HexToU64(DQN_STR8("0xabCD")); DQN_UTEST_ASSERTF(&test, result == 0xabCD, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert 0x") { uint64_t result = Dqn_HexToU64(DQN_STR8("0x")); DQN_UTEST_ASSERTF(&test, result == 0x0, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert 0X") { uint64_t result = Dqn_HexToU64(DQN_STR8("0X")); DQN_UTEST_ASSERTF(&test, result == 0x0, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert 3") { uint64_t result = Dqn_HexToU64(DQN_STR8("3")); DQN_UTEST_ASSERTF(&test, result == 3, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert f") { uint64_t result = Dqn_HexToU64(DQN_STR8("f")); DQN_UTEST_ASSERTF(&test, result == 0xf, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert g") { uint64_t result = Dqn_HexToU64(DQN_STR8("g")); DQN_UTEST_ASSERTF(&test, result == 0, "result: %" PRIu64, result); } DQN_UTEST_TEST("Convert -0x3") { uint64_t result = Dqn_HexToU64(DQN_STR8("-0x3")); DQN_UTEST_ASSERTF(&test, result == 0, "result: %" PRIu64, result); } uint32_t number = 0xd095f6; DQN_UTEST_TEST("Convert %x to string", number) { Dqn_Str8 number_hex = Dqn_BytesToHex(tmem.arena, &number, sizeof(number)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(number_hex, DQN_STR8("f695d000")), "number_hex=%.*s", DQN_STR_FMT(number_hex)); } number = 0xf6ed00; DQN_UTEST_TEST("Convert %x to string", number) { Dqn_Str8 number_hex = Dqn_BytesToHex(tmem.arena, &number, sizeof(number)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(number_hex, DQN_STR8("00edf600")), "number_hex=%.*s", DQN_STR_FMT(number_hex)); } Dqn_Str8 hex = DQN_STR8("0xf6ed00"); DQN_UTEST_TEST("Convert %.*s to bytes", DQN_STR_FMT(hex)) { Dqn_Str8 bytes = Dqn_HexToBytes(tmem.arena, hex); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(bytes, DQN_STR8("\xf6\xed\x00")), "number_hex=%.*s", DQN_STR_FMT(Dqn_BytesToHex(tmem.arena, bytes.data, bytes.size))); } } return test; } static Dqn_UTest Dqn_Test_BinarySearch() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_BinarySearch") { DQN_UTEST_TEST("Search array of 1 item") { uint32_t array[] = {1}; Dqn_BinarySearchResult result = {}; // NOTE: Match ============================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); // NOTE: Lower bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); // NOTE: Upper bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); } DQN_UTEST_TEST("Search array of 2 items") { uint32_t array[] = {1}; Dqn_BinarySearchResult result = {}; // NOTE: Match ============================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); // NOTE: Lower bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); // NOTE: Upper bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 1); } DQN_UTEST_TEST("Search array of 3 items") { uint32_t array[] = {1, 2, 3}; Dqn_BinarySearchResult result = {}; // NOTE: Match ============================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 3); // NOTE: Lower bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 3); // NOTE: Upper bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 3); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 3); } DQN_UTEST_TEST("Search array of 4 items") { uint32_t array[] = {1, 2, 3, 4}; Dqn_BinarySearchResult result = {}; // NOTE: Match ============================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 3); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 5U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 4); // NOTE: Lower bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 3); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 5U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 4); // NOTE: Upper bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 1); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 3); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 4); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 5U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 4); } DQN_UTEST_TEST("Search array with duplicate items") { uint32_t array[] = {1, 1, 2, 2, 3}; Dqn_BinarySearchResult result = {}; // NOTE: Match ============================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 4); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_Match); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 5); // NOTE: Lower bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 4); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 4U /*find*/, Dqn_BinarySearchType_LowerBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 5); // NOTE: Upper bound ======================================================================= result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 0U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 0); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 1U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 2U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 4); result = Dqn_BinarySearch(array, DQN_ARRAY_UCOUNT(array), 3U /*find*/, Dqn_BinarySearchType_UpperBound); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 5); } } return test; } static Dqn_UTest Dqn_Test_DSMap() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_DSMap") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); { Dqn_Arena arena = {}; uint32_t const MAP_SIZE = 64; Dqn_DSMap map = Dqn_DSMap_Init(&arena, MAP_SIZE, Dqn_DSMapFlags_Nil); DQN_DEFER { Dqn_DSMap_Deinit(&map, Dqn_ZeroMem_Yes); }; DQN_UTEST_TEST("Find non-existent value") { uint64_t *value = Dqn_DSMap_FindKeyStr8(&map, DQN_STR8("Foo")).value; DQN_UTEST_ASSERT(&test, !value); DQN_UTEST_ASSERT(&test, map.size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.occupied == 1 /*Sentinel*/); } Dqn_DSMapKey key = Dqn_DSMap_KeyCStr8(&map, "Bar"); DQN_UTEST_TEST("Insert value and lookup") { uint64_t desired_value = 0xF00BAA; uint64_t *slot_value = Dqn_DSMap_Set(&map, key, desired_value).value; DQN_UTEST_ASSERT(&test, slot_value); DQN_UTEST_ASSERT(&test, map.size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.occupied == 2); uint64_t *value = Dqn_DSMap_Find(&map, key).value; DQN_UTEST_ASSERT(&test, value); DQN_UTEST_ASSERT(&test, *value == desired_value); } DQN_UTEST_TEST("Remove key") { Dqn_DSMap_Erase(&map, key); DQN_UTEST_ASSERT(&test, map.size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.occupied == 1 /*Sentinel*/); } } enum DSMapTestType { DSMapTestType_Set, DSMapTestType_MakeSlot, DSMapTestType_Count }; for (int test_type = 0; test_type < DSMapTestType_Count; test_type++) { Dqn_Str8 prefix = {}; switch (test_type) { case DSMapTestType_Set: prefix = DQN_STR8("Set"); break; case DSMapTestType_MakeSlot: prefix = DQN_STR8("Make slot"); break; } Dqn_ArenaTempMemScope temp_mem_scope = Dqn_ArenaTempMemScope(tmem.arena); Dqn_Arena arena = {}; uint32_t const MAP_SIZE = 64; Dqn_DSMap map = Dqn_DSMap_Init(&arena, MAP_SIZE, Dqn_DSMapFlags_Nil); DQN_DEFER { Dqn_DSMap_Deinit(&map, Dqn_ZeroMem_Yes); }; DQN_UTEST_TEST("%.*s: Test growing", DQN_STR_FMT(prefix)) { uint64_t map_start_size = map.size; uint64_t value = 0; uint64_t grow_threshold = map_start_size * 3 / 4; for (; map.occupied != grow_threshold; value++) { Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value); DQN_UTEST_ASSERT(&test, !Dqn_DSMap_Find(&map, key).value); Dqn_DSMapResult make_result = {}; if (test_type == DSMapTestType_Set) { make_result = Dqn_DSMap_Set(&map, key, value); } else { make_result = Dqn_DSMap_Make(&map, key); } DQN_UTEST_ASSERT(&test, !make_result.found); DQN_UTEST_ASSERT(&test, Dqn_DSMap_Find(&map, key).value); } DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.size == map_start_size); DQN_UTEST_ASSERT(&test, map.occupied == 1 /*Sentinel*/ + value); { // NOTE: One more item should cause the table to grow by 2x Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value); Dqn_DSMapResult make_result = {}; if (test_type == DSMapTestType_Set) { make_result = Dqn_DSMap_Set(&map, key, value); } else { make_result = Dqn_DSMap_Make(&map, key); } value++; DQN_UTEST_ASSERT(&test, !make_result.found); DQN_UTEST_ASSERT(&test, map.size == map_start_size * 2); DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.occupied == 1 /*Sentinel*/ + value); } } DQN_UTEST_TEST("%.*s: Check the sentinel is present", DQN_STR_FMT(prefix)) { Dqn_DSMapSlot NIL_SLOT = {}; Dqn_DSMapSlot sentinel = map.slots[DQN_DS_MAP_SENTINEL_SLOT]; DQN_UTEST_ASSERT(&test, DQN_MEMCMP(&sentinel, &NIL_SLOT, sizeof(NIL_SLOT)) == 0); } DQN_UTEST_TEST("%.*s: Recheck all the hash tables values after growing", DQN_STR_FMT(prefix)) { for (uint64_t index = 1 /*Sentinel*/; index < map.occupied; index++) { Dqn_DSMapSlot const *slot = map.slots + index; // NOTE: Validate each slot value uint64_t value_test = index - 1; Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value_test); DQN_UTEST_ASSERT(&test, Dqn_DSMap_KeyEquals(slot->key, key)); if (test_type == DSMapTestType_Set) { DQN_UTEST_ASSERT(&test, slot->value == value_test); } else { DQN_UTEST_ASSERT(&test, slot->value == 0); // NOTE: Make slot does not set the key so should be 0 } DQN_UTEST_ASSERT(&test, slot->key.hash == Dqn_DSMap_Hash(&map, slot->key)); // NOTE: Check the reverse lookup is correct Dqn_DSMapResult check = Dqn_DSMap_Find(&map, slot->key); DQN_UTEST_ASSERT(&test, slot->value == *check.value); } } DQN_UTEST_TEST("%.*s: Test shrinking", DQN_STR_FMT(prefix)) { uint64_t start_map_size = map.size; uint64_t start_map_occupied = map.occupied; uint64_t value = 0; uint64_t shrink_threshold = map.size * 1 / 4; for (; map.occupied != shrink_threshold; value++) { Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value); DQN_UTEST_ASSERT(&test, Dqn_DSMap_Find(&map, key).value); Dqn_DSMap_Erase(&map, key); DQN_UTEST_ASSERT(&test, !Dqn_DSMap_Find(&map, key).value); } DQN_UTEST_ASSERT(&test, map.size == start_map_size); DQN_UTEST_ASSERT(&test, map.occupied == start_map_occupied - value); { // NOTE: One more item should cause the table to shrink by 2x Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value); Dqn_DSMap_Erase(&map, key); value++; DQN_UTEST_ASSERT(&test, map.size == start_map_size / 2); DQN_UTEST_ASSERT(&test, map.occupied == start_map_occupied - value); } { // NOTE: Check the sentinel is present Dqn_DSMapSlot NIL_SLOT = {}; Dqn_DSMapSlot sentinel = map.slots[DQN_DS_MAP_SENTINEL_SLOT]; DQN_UTEST_ASSERT(&test, DQN_MEMCMP(&sentinel, &NIL_SLOT, sizeof(NIL_SLOT)) == 0); } // NOTE: Recheck all the hash table values after shrinking for (uint64_t index = 1 /*Sentinel*/; index < map.occupied; index++) { // NOTE: Generate the key uint64_t value_test = value + (index - 1); Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value_test); // NOTE: Validate each slot value Dqn_DSMapResult find_result = Dqn_DSMap_Find(&map, key); DQN_UTEST_ASSERT(&test, find_result.value); DQN_UTEST_ASSERT(&test, find_result.slot->key == key); if (test_type == DSMapTestType_Set) { DQN_UTEST_ASSERT(&test, *find_result.value == value_test); } else { DQN_UTEST_ASSERT(&test, *find_result.value == 0); // NOTE: Make slot does not set the key so should be 0 } DQN_UTEST_ASSERT(&test, find_result.slot->key.hash == Dqn_DSMap_Hash(&map, find_result.slot->key)); // NOTE: Check the reverse lookup is correct Dqn_DSMapResult check = Dqn_DSMap_Find(&map, find_result.slot->key); DQN_UTEST_ASSERT(&test, *find_result.value == *check.value); } for (; map.occupied != 1; value++) { // NOTE: Remove all items from the table Dqn_DSMapKey key = Dqn_DSMap_KeyU64(&map, value); DQN_UTEST_ASSERT(&test, Dqn_DSMap_Find(&map, key).value); Dqn_DSMap_Erase(&map, key); DQN_UTEST_ASSERT(&test, !Dqn_DSMap_Find(&map, key).value); } DQN_UTEST_ASSERT(&test, map.initial_size == MAP_SIZE); DQN_UTEST_ASSERT(&test, map.size == map.initial_size); DQN_UTEST_ASSERT(&test, map.occupied == 1 /*Sentinel*/); } } } return test; } static Dqn_UTest Dqn_Test_FStr8() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_FStr8") { DQN_UTEST_TEST("Append too much fails") { Dqn_FStr8<4> str = {}; DQN_UTEST_ASSERT(&test, !Dqn_FStr8_Add(&str, DQN_STR8("abcde"))); } DQN_UTEST_TEST("Append format string too much fails") { Dqn_FStr8<4> str = {}; DQN_UTEST_ASSERT(&test, !Dqn_FStr8_AddF(&str, "abcde")); } } return test; } static Dqn_UTest Dqn_Test_Fs() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_OS_[Path|File]") { DQN_UTEST_TEST("Make directory recursive \"abcd/efgh\"") { DQN_UTEST_ASSERTF(&test, Dqn_OS_MakeDir(DQN_STR8("abcd/efgh")), "Failed to make directory"); DQN_UTEST_ASSERTF(&test, Dqn_OS_DirExists(DQN_STR8("abcd")), "Directory was not made"); DQN_UTEST_ASSERTF(&test, Dqn_OS_DirExists(DQN_STR8("abcd/efgh")), "Subdirectory was not made"); DQN_UTEST_ASSERTF(&test, Dqn_OS_FileExists(DQN_STR8("abcd")) == false, "This function should only return true for files"); DQN_UTEST_ASSERTF(&test, Dqn_OS_FileExists(DQN_STR8("abcd/efgh")) == false, "This function should only return true for files"); DQN_UTEST_ASSERTF(&test, Dqn_OS_PathDelete(DQN_STR8("abcd/efgh")), "Failed to delete directory"); DQN_UTEST_ASSERTF(&test, Dqn_OS_PathDelete(DQN_STR8("abcd")), "Failed to cleanup directory"); } DQN_UTEST_TEST("File write, read, copy, move and delete") { // NOTE: Write step Dqn_Str8 const SRC_FILE = DQN_STR8("dqn_test_file"); Dqn_b32 write_result = Dqn_OS_WriteAll(SRC_FILE, DQN_STR8("test"), nullptr); DQN_UTEST_ASSERT(&test, write_result); DQN_UTEST_ASSERT(&test, Dqn_OS_FileExists(SRC_FILE)); // NOTE: Read step Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 read_file = Dqn_OS_ReadAll(tmem.arena, SRC_FILE, nullptr); DQN_UTEST_ASSERTF(&test, Dqn_Str8_HasData(read_file), "Failed to load file"); DQN_UTEST_ASSERTF(&test, read_file.size == 4, "File read wrong amount of bytes"); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(read_file, DQN_STR8("test")), "read(%zu): %.*s", read_file.size, DQN_STR_FMT(read_file)); // NOTE: Copy step Dqn_Str8 const COPY_FILE = DQN_STR8("dqn_test_file_copy"); Dqn_b32 copy_result = Dqn_OS_CopyFile(SRC_FILE, COPY_FILE, true /*overwrite*/, nullptr); DQN_UTEST_ASSERT(&test, copy_result); DQN_UTEST_ASSERT(&test, Dqn_OS_FileExists(COPY_FILE)); // NOTE: Move step Dqn_Str8 const MOVE_FILE = DQN_STR8("dqn_test_file_move"); Dqn_b32 move_result = Dqn_OS_MoveFile(COPY_FILE, MOVE_FILE, true /*overwrite*/, nullptr); DQN_UTEST_ASSERT(&test, move_result); DQN_UTEST_ASSERT(&test, Dqn_OS_FileExists(MOVE_FILE)); DQN_UTEST_ASSERTF(&test, Dqn_OS_FileExists(COPY_FILE) == false, "Moving a file should remove the original"); // NOTE: Delete step Dqn_b32 delete_src_file = Dqn_OS_PathDelete(SRC_FILE); Dqn_b32 delete_moved_file = Dqn_OS_PathDelete(MOVE_FILE); DQN_UTEST_ASSERT(&test, delete_src_file); DQN_UTEST_ASSERT(&test, delete_moved_file); // NOTE: Deleting non-existent file fails Dqn_b32 delete_non_existent_src_file = Dqn_OS_PathDelete(SRC_FILE); Dqn_b32 delete_non_existent_moved_file = Dqn_OS_PathDelete(MOVE_FILE); DQN_UTEST_ASSERT(&test, delete_non_existent_moved_file == false); DQN_UTEST_ASSERT(&test, delete_non_existent_src_file == false); } } return test; } static Dqn_UTest Dqn_Test_FixedArray() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_FArray") { DQN_UTEST_TEST("Initialise from raw array") { int raw_array[] = {1, 2}; auto array = Dqn_FArray_Init(raw_array, DQN_ARRAY_UCOUNT(raw_array)); DQN_UTEST_ASSERT(&test, array.size == 2); DQN_UTEST_ASSERT(&test, array.data[0] == 1); DQN_UTEST_ASSERT(&test, array.data[1] == 2); } DQN_UTEST_TEST("Erase stable 1 element from array") { int raw_array[] = {1, 2, 3}; auto array = Dqn_FArray_Init(raw_array, DQN_ARRAY_UCOUNT(raw_array)); Dqn_FArray_EraseRange(&array, 1 /*begin_index*/, 1 /*count*/, Dqn_ArrayErase_Stable); DQN_UTEST_ASSERT(&test, array.size == 2); DQN_UTEST_ASSERT(&test, array.data[0] == 1); DQN_UTEST_ASSERT(&test, array.data[1] == 3); } DQN_UTEST_TEST("Erase unstable 1 element from array") { int raw_array[] = {1, 2, 3}; auto array = Dqn_FArray_Init(raw_array, DQN_ARRAY_UCOUNT(raw_array)); Dqn_FArray_EraseRange(&array, 0 /*begin_index*/, 1 /*count*/, Dqn_ArrayErase_Unstable); DQN_UTEST_ASSERT(&test, array.size == 2); DQN_UTEST_ASSERT(&test, array.data[0] == 3); DQN_UTEST_ASSERT(&test, array.data[1] == 2); } DQN_UTEST_TEST("Add 1 element to array") { int const ITEM = 2; int raw_array[] = {1}; auto array = Dqn_FArray_Init(raw_array, DQN_ARRAY_UCOUNT(raw_array)); Dqn_FArray_Add(&array, ITEM); DQN_UTEST_ASSERT(&test, array.size == 2); DQN_UTEST_ASSERT(&test, array.data[0] == 1); DQN_UTEST_ASSERT(&test, array.data[1] == ITEM); } DQN_UTEST_TEST("Clear array") { int raw_array[] = {1}; auto array = Dqn_FArray_Init(raw_array, DQN_ARRAY_UCOUNT(raw_array)); Dqn_FArray_Clear(&array); DQN_UTEST_ASSERT(&test, array.size == 0); } } return test; } static Dqn_UTest Dqn_Test_Intrinsics() { Dqn_UTest test = {}; // TODO(dqn): We don't have meaningful tests here, but since // atomics/intrinsics are implemented using macros we ensure the macro was // written properly with these tests. DQN_MSVC_WARNING_PUSH // NOTE: MSVC SAL complains that we are using Interlocked functionality on // variables it has detected as *not* being shared across threads. This is // fine, we're just running some basic tests, so permit it. // // Warning 28112 is a knock-on effect of this that it doesn't like us // reading the value of the variable that has been used in an Interlocked // function locally. DQN_MSVC_WARNING_DISABLE(28113) // Accessing a local variable val via an Interlocked function. DQN_MSVC_WARNING_DISABLE(28112) // A variable (val) which is accessed via an Interlocked function must always be accessed via an Interlocked function. See line 759. DQN_UTEST_GROUP(test, "Dqn_Atomic") { DQN_UTEST_TEST("Dqn_Atomic_AddU32") { uint32_t val = 0; Dqn_Atomic_AddU32(&val, 1); DQN_UTEST_ASSERTF(&test, val == 1, "val: %u", val); } DQN_UTEST_TEST("Dqn_Atomic_AddU64") { uint64_t val = 0; Dqn_Atomic_AddU64(&val, 1); DQN_UTEST_ASSERTF(&test, val == 1, "val: %" PRIu64, val); } DQN_UTEST_TEST("Dqn_Atomic_SubU32") { uint32_t val = 1; Dqn_Atomic_SubU32(&val, 1); DQN_UTEST_ASSERTF(&test, val == 0, "val: %u", val); } DQN_UTEST_TEST("Dqn_Atomic_SubU64") { uint64_t val = 1; Dqn_Atomic_SubU64(&val, 1); DQN_UTEST_ASSERTF(&test, val == 0, "val: %" PRIu64, val); } DQN_UTEST_TEST("Dqn_Atomic_SetValue32") { long a = 0; long b = 111; Dqn_Atomic_SetValue32(&a, b); DQN_UTEST_ASSERTF(&test, a == b, "a: %ld, b: %ld", a, b); } DQN_UTEST_TEST("Dqn_Atomic_SetValue64") { int64_t a = 0; int64_t b = 111; Dqn_Atomic_SetValue64(DQN_CAST(uint64_t *)&a, b); DQN_UTEST_ASSERTF(&test, a == b, "a: %" PRId64 ", b: %" PRId64, a, b); } Dqn_UTest_Begin(&test, "Dqn_CPU_TSC"); Dqn_CPU_TSC(); Dqn_UTest_End(&test); Dqn_UTest_Begin(&test, "Dqn_CompilerReadBarrierAndCPUReadFence"); Dqn_CompilerReadBarrierAndCPUReadFence; Dqn_UTest_End(&test); Dqn_UTest_Begin(&test, "Dqn_CompilerWriteBarrierAndCPUWriteFence"); Dqn_CompilerWriteBarrierAndCPUWriteFence; Dqn_UTest_End(&test); } DQN_MSVC_WARNING_POP return test; } #if defined(DQN_UNIT_TESTS_WITH_KECCAK) DQN_GCC_WARNING_PUSH DQN_GCC_WARNING_DISABLE(-Wunused-parameter) DQN_GCC_WARNING_DISABLE(-Wsign-compare) DQN_MSVC_WARNING_PUSH DQN_MSVC_WARNING_DISABLE(4244) DQN_MSVC_WARNING_DISABLE(4100) DQN_MSVC_WARNING_DISABLE(6385) // NOTE: Keccak Reference Implementation /////////////////////////////////////////////////////////// // A very compact Keccak implementation taken from the reference implementation // repository // // https://github.com/XKCP/XKCP/blob/master/Standalone/CompactFIPS202/C/Keccak-more-compact.c #define FOR(i,n) for(i=0; i>1; } #define ROL(a,o) ((((uint64_t)a)<>(64-o))) static uint64_t Dqn_RefImpl_load64_ (const uint8_t *x) { int i; uint64_t u=0; FOR(i,8) { u<<=8; u|=x[7-i]; } return u; } static void Dqn_RefImpl_store64_(uint8_t *x, uint64_t u) { int i; FOR(i,8) { x[i]=u; u>>=8; } } static void Dqn_RefImpl_xor64_ (uint8_t *x, uint64_t u) { int i; FOR(i,8) { x[i]^=u; u>>=8; } } #define rL(x,y) Dqn_RefImpl_load64_((uint8_t*)s+8*(x+5*y)) #define wL(x,y,l) Dqn_RefImpl_store64_((uint8_t*)s+8*(x+5*y),l) #define XL(x,y,l) Dqn_RefImpl_xor64_((uint8_t*)s+8*(x+5*y),l) void Dqn_RefImpl_Keccak_F1600(void *s) { int r,x,y,i,j,Y; uint8_t R=0x01; uint64_t C[5],D; for(i=0; i<24; i++) { /*θ*/ FOR(x,5) C[x]=rL(x,0)^rL(x,1)^rL(x,2)^rL(x,3)^rL(x,4); FOR(x,5) { D=C[(x+4)%5]^ROL(C[(x+1)%5],1); FOR(y,5) XL(x,y,D); } /*ρπ*/ x=1; y=r=0; D=rL(x,y); FOR(j,24) { r+=j+1; Y=(2*x+3*y)%5; x=y; y=Y; C[0]=rL(x,y); wL(x,y,ROL(D,r%64)); D=C[0]; } /*χ*/ FOR(y,5) { FOR(x,5) C[x]=rL(x,y); FOR(x,5) wL(x,y,C[x]^((~C[(x+1)%5])&C[(x+2)%5])); } /*ι*/ FOR(j,7) if (Dqn_RefImpl_LFSR86540_(&R)) XL(0,0,(uint64_t)1<<((1<0) { b=(inLen0) { b=(outLen0) Dqn_RefImpl_Keccak_F1600(s); } } #undef XL #undef wL #undef rL #undef ROL #undef FOR DQN_MSVC_WARNING_POP DQN_GCC_WARNING_POP #define DQN_KECCAK_IMPLEMENTATION #include "Standalone/dqn_keccak.h" #define DQN_UTEST_HASH_X_MACRO \ DQN_UTEST_HASH_X_ENTRY(SHA3_224, "SHA3-224") \ DQN_UTEST_HASH_X_ENTRY(SHA3_256, "SHA3-256") \ DQN_UTEST_HASH_X_ENTRY(SHA3_384, "SHA3-384") \ DQN_UTEST_HASH_X_ENTRY(SHA3_512, "SHA3-512") \ DQN_UTEST_HASH_X_ENTRY(Keccak_224, "Keccak-224") \ DQN_UTEST_HASH_X_ENTRY(Keccak_256, "Keccak-256") \ DQN_UTEST_HASH_X_ENTRY(Keccak_384, "Keccak-384") \ DQN_UTEST_HASH_X_ENTRY(Keccak_512, "Keccak-512") \ DQN_UTEST_HASH_X_ENTRY(Count, "Keccak-512") enum Dqn_Tests__HashType { #define DQN_UTEST_HASH_X_ENTRY(enum_val, string) Hash_##enum_val, DQN_UTEST_HASH_X_MACRO #undef DQN_UTEST_HASH_X_ENTRY }; Dqn_Str8 const DQN_UTEST_HASH_STRING_[] = { #define DQN_UTEST_HASH_X_ENTRY(enum_val, string) DQN_STR8(string), DQN_UTEST_HASH_X_MACRO #undef DQN_UTEST_HASH_X_ENTRY }; void Dqn_Test_KeccakDispatch_(Dqn_UTest *test, int hash_type, Dqn_Str8 input) { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 input_hex = Dqn_BytesToHex(tmem.arena, input.data, input.size); switch(hash_type) { case Hash_SHA3_224: { Dqn_KeccakBytes28 hash = Dqn_SHA3_224StringToBytes28(input); Dqn_KeccakBytes28 expect; Dqn_RefImpl_FIPS202_SHA3_224_(DQN_CAST(uint8_t *)input.data, input.size, (uint8_t *)expect.data); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes28Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING56_FMT(Dqn_KeccakBytes28ToHex(&hash).data), DQN_KECCAK_STRING56_FMT(Dqn_KeccakBytes28ToHex(&expect).data)); } break; case Hash_SHA3_256: { Dqn_KeccakBytes32 hash = Dqn_SHA3_256StringToBytes32(input); Dqn_KeccakBytes32 expect; Dqn_RefImpl_FIPS202_SHA3_256_(DQN_CAST(uint8_t *)input.data, input.size, (uint8_t *)expect.data); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes32Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING64_FMT(Dqn_KeccakBytes32ToHex(&hash).data), DQN_KECCAK_STRING64_FMT(Dqn_KeccakBytes32ToHex(&expect).data)); } break; case Hash_SHA3_384: { Dqn_KeccakBytes48 hash = Dqn_SHA3_384StringToBytes48(input); Dqn_KeccakBytes48 expect; Dqn_RefImpl_FIPS202_SHA3_384_(DQN_CAST(uint8_t *)input.data, input.size, (uint8_t *)expect.data); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes48Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING96_FMT(Dqn_KeccakBytes48ToHex(&hash).data), DQN_KECCAK_STRING96_FMT(Dqn_KeccakBytes48ToHex(&expect).data)); } break; case Hash_SHA3_512: { Dqn_KeccakBytes64 hash = Dqn_SHA3_512StringToBytes64(input); Dqn_KeccakBytes64 expect; Dqn_RefImpl_FIPS202_SHA3_512_(DQN_CAST(uint8_t *)input.data, input.size, (uint8_t *)expect.data); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes64Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING128_FMT(Dqn_KeccakBytes64ToHex(&hash).data), DQN_KECCAK_STRING128_FMT(Dqn_KeccakBytes64ToHex(&expect).data)); } break; case Hash_Keccak_224: { Dqn_KeccakBytes28 hash = Dqn_Keccak224StringToBytes28(input); Dqn_KeccakBytes28 expect; Dqn_RefImpl_Keccak_(1152, 448, DQN_CAST(uint8_t *)input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect)); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes28Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING56_FMT(Dqn_KeccakBytes28ToHex(&hash).data), DQN_KECCAK_STRING56_FMT(Dqn_KeccakBytes28ToHex(&expect).data)); } break; case Hash_Keccak_256: { Dqn_KeccakBytes32 hash = Dqn_Keccak256StringToBytes32(input); Dqn_KeccakBytes32 expect; Dqn_RefImpl_Keccak_(1088, 512, DQN_CAST(uint8_t *)input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect)); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes32Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING64_FMT(Dqn_KeccakBytes32ToHex(&hash).data), DQN_KECCAK_STRING64_FMT(Dqn_KeccakBytes32ToHex(&expect).data)); } break; case Hash_Keccak_384: { Dqn_KeccakBytes48 hash = Dqn_Keccak384StringToBytes48(input); Dqn_KeccakBytes48 expect; Dqn_RefImpl_Keccak_(832, 768, DQN_CAST(uint8_t *)input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect)); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes48Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING96_FMT(Dqn_KeccakBytes48ToHex(&hash).data), DQN_KECCAK_STRING96_FMT(Dqn_KeccakBytes48ToHex(&expect).data)); } break; case Hash_Keccak_512: { Dqn_KeccakBytes64 hash = Dqn_Keccak512StringToBytes64(input); Dqn_KeccakBytes64 expect; Dqn_RefImpl_Keccak_(576, 1024, DQN_CAST(uint8_t *)input.data, input.size, 0x01, (uint8_t *)expect.data, sizeof(expect)); DQN_UTEST_ASSERTF(test, Dqn_KeccakBytes64Equals(&hash, &expect), "\ninput: %.*s" "\nhash: %.*s" "\nexpect: %.*s" , DQN_STR_FMT(input_hex), DQN_KECCAK_STRING128_FMT(Dqn_KeccakBytes64ToHex(&hash).data), DQN_KECCAK_STRING128_FMT(Dqn_KeccakBytes64ToHex(&expect).data)); } break; } } Dqn_UTest Dqn_Test_Keccak() { Dqn_UTest test = {}; Dqn_Str8 const INPUTS[] = { DQN_STR8("abc"), DQN_STR8(""), DQN_STR8("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"), DQN_STR8("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmno" "pqrstnopqrstu"), }; DQN_UTEST_GROUP(test, "Dqn_Keccak") { for (int hash_type = 0; hash_type < Hash_Count; hash_type++) { Dqn_PCG32 rng = Dqn_PCG32_Init(0xd48e'be21'2af8'733d); for (Dqn_Str8 input : INPUTS) { Dqn_UTest_Begin(&test, "%.*s - Input: %.*s", DQN_STR_FMT(DQN_UTEST_HASH_STRING_[hash_type]), DQN_CAST(int)DQN_MIN(input.size, 54), input.data); Dqn_Test_KeccakDispatch_(&test, hash_type, input); Dqn_UTest_End(&test); } Dqn_UTest_Begin(&test, "%.*s - Deterministic random inputs", DQN_STR_FMT(DQN_UTEST_HASH_STRING_[hash_type])); for (Dqn_usize index = 0; index < 128; index++) { char src[4096] = {}; uint32_t src_size = Dqn_PCG32_Range(&rng, 0, sizeof(src)); for (Dqn_usize src_index = 0; src_index < src_size; src_index++) src[src_index] = DQN_CAST(char)Dqn_PCG32_Range(&rng, 0, 255); Dqn_Str8 input = Dqn_Str8_Init(src, src_size); Dqn_Test_KeccakDispatch_(&test, hash_type, input); } Dqn_UTest_End(&test); } } return test; } #endif // defined(DQN_UNIT_TESTS_WITH_KECCAK) static Dqn_UTest Dqn_Test_M4() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_M4") { DQN_UTEST_TEST("Simple translate and scale matrix") { Dqn_M4 translate = Dqn_M4_TranslateF(1, 2, 3); Dqn_M4 scale = Dqn_M4_ScaleF(2, 2, 2); Dqn_M4 result = Dqn_M4_Mul(translate, scale); const Dqn_M4 EXPECT = {{ {2, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {1, 2, 3, 1}, }}; DQN_UTEST_ASSERTF(&test, memcmp(result.columns, EXPECT.columns, sizeof(EXPECT)) == 0, "\nresult =\n%s\nexpected =\n%s", Dqn_M4_ColumnMajorString(result).data, Dqn_M4_ColumnMajorString(EXPECT).data); } } return test; } static Dqn_UTest Dqn_Test_OS() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_OS") { DQN_UTEST_TEST("Generate secure RNG bytes with nullptr") { Dqn_b32 result = Dqn_OS_SecureRNGBytes(nullptr, 1); DQN_UTEST_ASSERT(&test, result == false); } DQN_UTEST_TEST("Generate secure RNG 32 bytes") { char const ZERO[32] = {}; char buf[32] = {}; bool result = Dqn_OS_SecureRNGBytes(buf, DQN_ARRAY_UCOUNT(buf)); DQN_UTEST_ASSERT(&test, result); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(buf, ZERO, DQN_ARRAY_UCOUNT(buf)) != 0); } DQN_UTEST_TEST("Generate secure RNG 0 bytes") { char buf[32] = {}; buf[0] = 'Z'; Dqn_b32 result = Dqn_OS_SecureRNGBytes(buf, 0); DQN_UTEST_ASSERT(&test, result); DQN_UTEST_ASSERT(&test, buf[0] == 'Z'); } DQN_UTEST_TEST("Query executable directory") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 result = Dqn_OS_EXEDir(tmem.arena); DQN_UTEST_ASSERT(&test, Dqn_Str8_HasData(result)); DQN_UTEST_ASSERTF(&test, Dqn_OS_DirExists(result), "result(%zu): %.*s", result.size, DQN_STR_FMT(result)); } DQN_UTEST_TEST("Dqn_OS_PerfCounterNow") { uint64_t result = Dqn_OS_PerfCounterNow(); DQN_UTEST_ASSERT(&test, result != 0); } DQN_UTEST_TEST("Consecutive ticks are ordered") { uint64_t a = Dqn_OS_PerfCounterNow(); uint64_t b = Dqn_OS_PerfCounterNow(); DQN_UTEST_ASSERTF(&test, b >= a, "a: %" PRIu64 ", b: %" PRIu64, a, b); } DQN_UTEST_TEST("Ticks to time are a correct order of magnitude") { uint64_t a = Dqn_OS_PerfCounterNow(); uint64_t b = Dqn_OS_PerfCounterNow(); Dqn_f64 s = Dqn_OS_PerfCounterS(a, b); Dqn_f64 ms = Dqn_OS_PerfCounterMs(a, b); Dqn_f64 us = Dqn_OS_PerfCounterUs(a, b); Dqn_f64 ns = Dqn_OS_PerfCounterNs(a, b); DQN_UTEST_ASSERTF(&test, s <= ms, "s: %f, ms: %f", s, ms); DQN_UTEST_ASSERTF(&test, ms <= us, "ms: %f, us: %f", ms, us); DQN_UTEST_ASSERTF(&test, us <= ns, "us: %f, ns: %f", us, ns); } } return test; } static Dqn_UTest Dqn_Test_Rect() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_Rect") { DQN_UTEST_TEST("No intersection") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx1(0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(200, 0), Dqn_V2_InitNx2(200, 200)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 0 && ab_max.y == 0, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("A's min intersects B") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(50, 50), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 50 && ab.pos.y == 50 && ab_max.x == 100 && ab_max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("B's min intersects A") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(50, 50), Dqn_V2_InitNx2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 50 && ab.pos.y == 50 && ab_max.x == 100 && ab_max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("A's max intersects B") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(-50, -50), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 50 && ab_max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("B's max intersects A") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(-50, -50), Dqn_V2_InitNx2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 50 && ab_max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("B contains A") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(25, 25), Dqn_V2_InitNx2( 25, 25)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 25 && ab.pos.y == 25 && ab_max.x == 50 && ab_max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("A contains B") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2( 0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(25, 25), Dqn_V2_InitNx2( 25, 25)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 25 && ab.pos.y == 25 && ab_max.x == 50 && ab_max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } DQN_UTEST_TEST("A equals B") { Dqn_Rect a = Dqn_Rect_InitV2x2(Dqn_V2_InitNx2(0, 0), Dqn_V2_InitNx2(100, 100)); Dqn_Rect b = a; Dqn_Rect ab = Dqn_Rect_Intersection(a, b); Dqn_V2 ab_max = ab.pos + ab.size; DQN_UTEST_ASSERTF(&test, ab.pos.x == 0 && ab.pos.y == 0 && ab_max.x == 100 && ab_max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.pos.x, ab.pos.y, ab_max.x, ab_max.y); } } return test; } static Dqn_UTest Dqn_Test_Str8() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_Str8") { DQN_UTEST_TEST("Initialise with string literal w/ macro") { Dqn_Str8 string = DQN_STR8("AB"); DQN_UTEST_ASSERTF(&test, string.size == 2, "size: %zu", string.size); DQN_UTEST_ASSERTF(&test, string.data[0] == 'A', "string[0]: %c", string.data[0]); DQN_UTEST_ASSERTF(&test, string.data[1] == 'B', "string[1]: %c", string.data[1]); } DQN_UTEST_TEST("Initialise with format string") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 string = Dqn_Str8_InitF(tmem.arena, "%s", "AB"); DQN_UTEST_ASSERTF(&test, string.size == 2, "size: %zu", string.size); DQN_UTEST_ASSERTF(&test, string.data[0] == 'A', "string[0]: %c", string.data[0]); DQN_UTEST_ASSERTF(&test, string.data[1] == 'B', "string[1]: %c", string.data[1]); DQN_UTEST_ASSERTF(&test, string.data[2] == 0, "string[2]: %c", string.data[2]); } DQN_UTEST_TEST("Copy string") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 string = DQN_STR8("AB"); Dqn_Str8 copy = Dqn_Str8_Copy(tmem.arena, string); DQN_UTEST_ASSERTF(&test, copy.size == 2, "size: %zu", copy.size); DQN_UTEST_ASSERTF(&test, copy.data[0] == 'A', "copy[0]: %c", copy.data[0]); DQN_UTEST_ASSERTF(&test, copy.data[1] == 'B', "copy[1]: %c", copy.data[1]); DQN_UTEST_ASSERTF(&test, copy.data[2] == 0, "copy[2]: %c", copy.data[2]); } DQN_UTEST_TEST("Trim whitespace around string") { Dqn_Str8 string = Dqn_Str8_TrimWhitespaceAround(DQN_STR8(" AB ")); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(string, DQN_STR8("AB")), "[string=%.*s]", DQN_STR_FMT(string)); } DQN_UTEST_TEST("Allocate string from arena") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 string = Dqn_Str8_Alloc(tmem.arena, 2, Dqn_ZeroMem_No); DQN_UTEST_ASSERTF(&test, string.size == 2, "size: %zu", string.size); } // NOTE: Dqn_CStr8_Trim[Prefix/Suffix] // --------------------------------------------------------------------------------------------- DQN_UTEST_TEST("Trim prefix with matching prefix") { Dqn_Str8 input = DQN_STR8("nft/abc"); Dqn_Str8 result = Dqn_Str8_TrimPrefix(input, DQN_STR8("nft/")); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(result, DQN_STR8("abc")), "%.*s", DQN_STR_FMT(result)); } DQN_UTEST_TEST("Trim prefix with non matching prefix") { Dqn_Str8 input = DQN_STR8("nft/abc"); Dqn_Str8 result = Dqn_Str8_TrimPrefix(input, DQN_STR8(" ft/")); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(result, input), "%.*s", DQN_STR_FMT(result)); } DQN_UTEST_TEST("Trim suffix with matching suffix") { Dqn_Str8 input = DQN_STR8("nft/abc"); Dqn_Str8 result = Dqn_Str8_TrimSuffix(input, DQN_STR8("abc")); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(result, DQN_STR8("nft/")), "%.*s", DQN_STR_FMT(result)); } DQN_UTEST_TEST("Trim suffix with non matching suffix") { Dqn_Str8 input = DQN_STR8("nft/abc"); Dqn_Str8 result = Dqn_Str8_TrimSuffix(input, DQN_STR8("ab")); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(result, input), "%.*s", DQN_STR_FMT(result)); } // NOTE: Dqn_Str8_IsAllDigits ////////////////////////////////////////////////////////////// DQN_UTEST_TEST("Is all digits fails on non-digit string") { Dqn_b32 result = Dqn_Str8_IsAll(DQN_STR8("@123string"), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, result == false); } DQN_UTEST_TEST("Is all digits fails on nullptr") { Dqn_b32 result = Dqn_Str8_IsAll(Dqn_Str8_Init(nullptr, 0), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, result == false); } DQN_UTEST_TEST("Is all digits fails on nullptr w/ size") { Dqn_b32 result = Dqn_Str8_IsAll(Dqn_Str8_Init(nullptr, 1), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, result == false); } DQN_UTEST_TEST("Is all digits fails on string w/ 0 size") { char const buf[] = "@123string"; Dqn_b32 result = Dqn_Str8_IsAll(Dqn_Str8_Init(buf, 0), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, !result); } DQN_UTEST_TEST("Is all digits success") { Dqn_b32 result = Dqn_Str8_IsAll(DQN_STR8("23"), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, DQN_CAST(bool)result == true); } DQN_UTEST_TEST("Is all digits fails on whitespace") { Dqn_b32 result = Dqn_Str8_IsAll(DQN_STR8("23 "), Dqn_Str8IsAll_Digits); DQN_UTEST_ASSERT(&test, DQN_CAST(bool)result == false); } // NOTE: Dqn_Str8_BinarySplit // --------------------------------------------------------------------------------------------- { { char const *TEST_FMT = "Binary split \"%.*s\" with \"%.*s\""; Dqn_Str8 delimiter = DQN_STR8("/"); Dqn_Str8 input = DQN_STR8("abcdef"); DQN_UTEST_TEST(TEST_FMT, DQN_STR_FMT(input), DQN_STR_FMT(delimiter)) { Dqn_Str8BinarySplitResult split = Dqn_Str8_BinarySplit(input, delimiter); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.lhs, DQN_STR8("abcdef")), "[lhs=%.*s]", DQN_STR_FMT(split.lhs)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.rhs, DQN_STR8("")), "[rhs=%.*s]", DQN_STR_FMT(split.rhs)); } input = DQN_STR8("abc/def"); DQN_UTEST_TEST(TEST_FMT, DQN_STR_FMT(input), DQN_STR_FMT(delimiter)) { Dqn_Str8BinarySplitResult split = Dqn_Str8_BinarySplit(input, delimiter); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.lhs, DQN_STR8("abc")), "[lhs=%.*s]", DQN_STR_FMT(split.lhs)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.rhs, DQN_STR8("def")), "[rhs=%.*s]", DQN_STR_FMT(split.rhs)); } input = DQN_STR8("/abcdef"); DQN_UTEST_TEST(TEST_FMT, DQN_STR_FMT(input), DQN_STR_FMT(delimiter)) { Dqn_Str8BinarySplitResult split = Dqn_Str8_BinarySplit(input, delimiter); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.lhs, DQN_STR8("")), "[lhs=%.*s]", DQN_STR_FMT(split.lhs)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.rhs, DQN_STR8("abcdef")), "[rhs=%.*s]", DQN_STR_FMT(split.rhs)); } } { Dqn_Str8 delimiter = DQN_STR8("-=-"); Dqn_Str8 input = DQN_STR8("123-=-456"); DQN_UTEST_TEST("Binary split \"%.*s\" with \"%.*s\"", DQN_STR_FMT(input), DQN_STR_FMT(delimiter)) { Dqn_Str8BinarySplitResult split = Dqn_Str8_BinarySplit(input, delimiter); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.lhs, DQN_STR8("123")), "[lhs=%.*s]", DQN_STR_FMT(split.lhs)); DQN_UTEST_ASSERTF(&test, Dqn_Str8_Eq(split.rhs, DQN_STR8("456")), "[rhs=%.*s]", DQN_STR_FMT(split.rhs)); } } } // NOTE: Dqn_Str8_ToI64 //////////////////////////////////////////////////////////////////// DQN_UTEST_TEST("To I64: Convert null string") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(Dqn_Str8_Init(nullptr, 5), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 0); } DQN_UTEST_TEST("To I64: Convert empty string") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8(""), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 0); } DQN_UTEST_TEST("To I64: Convert \"1\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("1"), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 1); } DQN_UTEST_TEST("To I64: Convert \"-0\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("-0"), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 0); } DQN_UTEST_TEST("To I64: Convert \"-1\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("-1"), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == -1); } DQN_UTEST_TEST("To I64: Convert \"1.2\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("1.2"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERT(&test, result.value == 1); } DQN_UTEST_TEST("To I64: Convert \"1,234\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("1,234"), ','); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 1234); } DQN_UTEST_TEST("To I64: Convert \"1,2\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("1,2"), ','); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERT(&test, result.value == 12); } DQN_UTEST_TEST("To I64: Convert \"12a3\"") { Dqn_Str8ToI64Result result = Dqn_Str8_ToI64(DQN_STR8("12a3"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERT(&test, result.value == 12); } // NOTE: Dqn_Str8_ToU64 // --------------------------------------------------------------------------------------------- DQN_UTEST_TEST("To U64: Convert nullptr") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(Dqn_Str8_Init(nullptr, 5), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERTF(&test, result.value == 0, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert empty string") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8(""), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERTF(&test, result.value == 0, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"1\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("1"), 0); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERTF(&test, result.value == 1, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"-0\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("-0"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERTF(&test, result.value == 0, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"-1\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("-1"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERTF(&test, result.value == 0, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"1.2\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("1.2"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERTF(&test, result.value == 1, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"1,234\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("1,234"), ','); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERTF(&test, result.value == 1234, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"1,2\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("1,2"), ','); DQN_UTEST_ASSERT(&test, result.success); DQN_UTEST_ASSERTF(&test, result.value == 12, "result: %" PRIu64, result.value); } DQN_UTEST_TEST("To U64: Convert \"12a3\"") { Dqn_Str8ToU64Result result = Dqn_Str8_ToU64(DQN_STR8("12a3"), 0); DQN_UTEST_ASSERT(&test, !result.success); DQN_UTEST_ASSERTF(&test, result.value == 12, "result: %" PRIu64, result.value); } // NOTE: Dqn_Str8_Find ///////////////////////////////////////////////////////////////////// DQN_UTEST_TEST("Find: String (char) is not in buffer") { Dqn_Str8 buf = DQN_STR8("836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55"); Dqn_Str8 find = DQN_STR8("2"); Dqn_Str8FindResult result = Dqn_Str8_FindStr8(buf, find, Dqn_Str8EqCase_Sensitive); DQN_UTEST_ASSERT(&test, !result.found); DQN_UTEST_ASSERT(&test, result.index == 0); DQN_UTEST_ASSERT(&test, result.match.data == nullptr); DQN_UTEST_ASSERT(&test, result.match.size == 0); } DQN_UTEST_TEST("Find: String (char) is in buffer") { Dqn_Str8 buf = DQN_STR8("836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55"); Dqn_Str8 find = DQN_STR8("6"); Dqn_Str8FindResult result = Dqn_Str8_FindStr8(buf, find, Dqn_Str8EqCase_Sensitive); DQN_UTEST_ASSERT(&test, result.found); DQN_UTEST_ASSERT(&test, result.index == 2); DQN_UTEST_ASSERT(&test, result.match.data[0] == '6'); } // NOTE: Dqn_Str8_FileNameFromPath ///////////////////////////////////////////////////////// DQN_UTEST_TEST("File name from Windows path") { Dqn_Str8 buf = DQN_STR8("C:\\ABC\\test.exe"); Dqn_Str8 result = Dqn_Str8_FileNameFromPath(buf); DQN_UTEST_ASSERTF(&test, result == DQN_STR8("test.exe"), "%.*s", DQN_STR_FMT(result)); } DQN_UTEST_TEST("File name from Linux path") { Dqn_Str8 buf = DQN_STR8("/ABC/test.exe"); Dqn_Str8 result = Dqn_Str8_FileNameFromPath(buf); DQN_UTEST_ASSERTF(&test, result == DQN_STR8("test.exe"), "%.*s", DQN_STR_FMT(result)); } // NOTE: Dqn_Str8_TrimPrefix // ========================================================================================= DQN_UTEST_TEST("Trim prefix") { Dqn_Str8 prefix = DQN_STR8("@123"); Dqn_Str8 buf = DQN_STR8("@123string"); Dqn_Str8 result = Dqn_Str8_TrimPrefix(buf, prefix, Dqn_Str8EqCase_Sensitive); DQN_UTEST_ASSERT(&test, result == DQN_STR8("string")); } } return test; } static Dqn_UTest Dqn_Test_TicketMutex() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_TicketMutex") { DQN_UTEST_TEST("Ticket mutex start and stop") { // TODO: We don't have a meaningful test but since atomics are // implemented with a macro this ensures that we test that they are // written correctly. Dqn_TicketMutex mutex = {}; Dqn_TicketMutex_Begin(&mutex); Dqn_TicketMutex_End(&mutex); DQN_UTEST_ASSERT(&test, mutex.ticket == mutex.serving); } DQN_UTEST_TEST("Ticket mutex start and stop w/ advanced API") { Dqn_TicketMutex mutex = {}; unsigned int ticket_a = Dqn_TicketMutex_MakeTicket(&mutex); unsigned int ticket_b = Dqn_TicketMutex_MakeTicket(&mutex); DQN_UTEST_ASSERT(&test, DQN_CAST(bool)Dqn_TicketMutex_CanLock(&mutex, ticket_b) == false); DQN_UTEST_ASSERT(&test, DQN_CAST(bool)Dqn_TicketMutex_CanLock(&mutex, ticket_a) == true); Dqn_TicketMutex_BeginTicket(&mutex, ticket_a); Dqn_TicketMutex_End(&mutex); Dqn_TicketMutex_BeginTicket(&mutex, ticket_b); Dqn_TicketMutex_End(&mutex); DQN_UTEST_ASSERT(&test, mutex.ticket == mutex.serving); DQN_UTEST_ASSERT(&test, mutex.ticket == ticket_b + 1); } } return test; } static Dqn_UTest Dqn_Test_VArray() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "Dqn_VArray") { { Dqn_VArray array = Dqn_VArray_InitByteSize(DQN_KILOBYTES(64), 0); DQN_DEFER { Dqn_VArray_Deinit(&array); }; DQN_UTEST_TEST("Test adding an array of items to the array") { uint32_t array_literal[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; Dqn_VArray_AddArray(&array, array_literal, DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test stable erase, 1 item, the '2' value from the array") { Dqn_VArray_EraseRange(&array, 2 /*begin_index*/, 1 /*count*/, Dqn_ArrayErase_Stable); uint32_t array_literal[] = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test unstable erase, 1 item, the '1' value from the array") { Dqn_VArray_EraseRange(&array, 1 /*begin_index*/, 1 /*count*/, Dqn_ArrayErase_Unstable); uint32_t array_literal[] = {0, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } Dqn_ArrayErase erase_enums[] = {Dqn_ArrayErase_Stable, Dqn_ArrayErase_Unstable}; DQN_UTEST_TEST("Test un/stable erase, OOB") { for (Dqn_ArrayErase erase : erase_enums) { uint32_t array_literal[] = {0, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; Dqn_VArray_EraseRange(&array, DQN_ARRAY_UCOUNT(array_literal) /*begin_index*/, DQN_ARRAY_UCOUNT(array_literal) + 100 /*count*/, erase); DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } } DQN_UTEST_TEST("Test flipped begin/end index stable erase, 2 items, the '15, 3' value from the array") { Dqn_VArray_EraseRange(&array, 2 /*begin_index*/, -2 /*count*/, Dqn_ArrayErase_Stable); uint32_t array_literal[] = {0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test flipped begin/end index unstable erase, 2 items, the '4, 5' value from the array") { Dqn_VArray_EraseRange(&array, 2 /*begin_index*/, -2 /*count*/, Dqn_ArrayErase_Unstable); uint32_t array_literal[] = {0, 13, 14, 6, 7, 8, 9, 10, 11, 12}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test stable erase range, 2+1 (oob) item, the '13, 14, +1 OOB' value from the array") { Dqn_VArray_EraseRange(&array, 8 /*begin_index*/, 3 /*count*/, Dqn_ArrayErase_Stable); uint32_t array_literal[] = {0, 13, 14, 6, 7, 8, 9, 10}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test unstable erase range, 3+1 (oob) item, the '11, 12, +1 OOB' value from the array") { Dqn_VArray_EraseRange(&array, 6 /*begin_index*/, 3 /*count*/, Dqn_ArrayErase_Unstable); uint32_t array_literal[] = {0, 13, 14, 6, 7, 8}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test stable erase -overflow OOB, erasing the '0, 13' value from the array") { Dqn_VArray_EraseRange(&array, 1 /*begin_index*/, -DQN_ISIZE_MAX /*count*/, Dqn_ArrayErase_Stable); uint32_t array_literal[] = {14, 6, 7, 8}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test unstable erase +overflow OOB, erasing the '7, 8' value from the array") { Dqn_VArray_EraseRange(&array, 2 /*begin_index*/, DQN_ISIZE_MAX /*count*/, Dqn_ArrayErase_Unstable); uint32_t array_literal[] = {14, 6}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(array_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, array_literal, DQN_ARRAY_UCOUNT(array_literal) * sizeof(array_literal[0])) == 0); } DQN_UTEST_TEST("Test adding an array of items after erase") { uint32_t array_literal[] = {0, 1, 2, 3}; Dqn_VArray_AddArray(&array, array_literal, DQN_ARRAY_UCOUNT(array_literal)); uint32_t expected_literal[] = {14, 6, 0, 1, 2, 3}; DQN_UTEST_ASSERT(&test, array.size == DQN_ARRAY_UCOUNT(expected_literal)); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(array.data, expected_literal, DQN_ARRAY_UCOUNT(expected_literal) * sizeof(expected_literal[0])) == 0); } } DQN_UTEST_TEST("Array of unaligned objects are contiguously laid out in memory") { // NOTE: Since we allocate from a virtual memory block, each time // we request memory from the block we can demand some alignment // on the returned pointer from the memory block. If there's // additional alignment done in that function then we can no // longer access the items in the array contiguously leading to // confusing memory "corruption" errors. // // This test makes sure that the unaligned objects are allocated // from the memory block (and hence the array) contiguously // when the size of the object is not aligned with the required // alignment of the object. DQN_MSVC_WARNING_PUSH DQN_MSVC_WARNING_DISABLE(4324) // warning C4324: 'TestVArray::UnalignedObject': structure was padded due to alignment specifier struct alignas(8) UnalignedObject { char data[511]; }; DQN_MSVC_WARNING_POP Dqn_VArray array = Dqn_VArray_InitByteSize(DQN_KILOBYTES(64), 0); DQN_DEFER { Dqn_VArray_Deinit(&array); }; // NOTE: Verify that the items returned from the data array are // contiguous in memory. UnalignedObject *make_item_a = Dqn_VArray_MakeArray(&array, 1, Dqn_ZeroMem_Yes); UnalignedObject *make_item_b = Dqn_VArray_MakeArray(&array, 1, Dqn_ZeroMem_Yes); DQN_MEMSET(make_item_a->data, 'a', sizeof(make_item_a->data)); DQN_MEMSET(make_item_b->data, 'b', sizeof(make_item_b->data)); DQN_UTEST_ASSERT(&test, (uintptr_t)make_item_b == (uintptr_t)(make_item_a + 1)); // NOTE: Verify that accessing the items from the data array yield // the same object. DQN_UTEST_ASSERT(&test, array.size == 2); UnalignedObject *data_item_a = array.data + 0; UnalignedObject *data_item_b = array.data + 1; DQN_UTEST_ASSERT(&test, (uintptr_t)data_item_b == (uintptr_t)(data_item_a + 1)); DQN_UTEST_ASSERT(&test, (uintptr_t)data_item_b == (uintptr_t)(make_item_a + 1)); DQN_UTEST_ASSERT(&test, (uintptr_t)data_item_b == (uintptr_t)make_item_b); for (Dqn_usize i = 0; i < sizeof(data_item_a->data); i++) { DQN_UTEST_ASSERT(&test, data_item_a->data[i] == 'a'); } for (Dqn_usize i = 0; i < sizeof(data_item_b->data); i++) { DQN_UTEST_ASSERT(&test, data_item_b->data[i] == 'b'); } } } return test; } #if defined(DQN_PLATFORM_WIN32) static Dqn_UTest Dqn_Test_Win() { Dqn_UTest test = {}; DQN_UTEST_GROUP(test, "OS Win32") { Dqn_TLSTMem tmem = Dqn_TLS_TMem(nullptr); Dqn_Str8 input8 = DQN_STR8("String"); Dqn_Str16 input16 = Dqn_Str16{(wchar_t *)(L"String"), sizeof(L"String") / sizeof(L"String"[0]) - 1}; DQN_UTEST_TEST("Str8 to Str16") { Dqn_Str16 result = Dqn_Win_Str8ToStr16(tmem.arena, input8); DQN_UTEST_ASSERT(&test, result == input16); } DQN_UTEST_TEST("Str16 to Str8") { Dqn_Str8 result = Dqn_Win_Str16ToStr8(tmem.arena, input16); DQN_UTEST_ASSERT(&test, result == input8); } DQN_UTEST_TEST("Str16 to Str8: Null terminates string") { int size_required = Dqn_Win_Str16ToStr8Buffer(input16, nullptr, 0); char *string = Dqn_Arena_NewArray(tmem.arena, char, size_required + 1, Dqn_ZeroMem_No); // Fill the string with error sentinels DQN_MEMSET(string, 'Z', size_required + 1); int size_returned = Dqn_Win_Str16ToStr8Buffer(input16, string, size_required + 1); char const EXPECTED[] = {'S', 't', 'r', 'i', 'n', 'g', 0}; DQN_UTEST_ASSERTF(&test, size_required == size_returned, "string_size: %d, result: %d", size_required, size_returned); DQN_UTEST_ASSERTF(&test, size_returned == DQN_ARRAY_UCOUNT(EXPECTED) - 1, "string_size: %d, expected: %zu", size_returned, DQN_ARRAY_UCOUNT(EXPECTED) - 1); DQN_UTEST_ASSERT(&test, DQN_MEMCMP(EXPECTED, string, sizeof(EXPECTED)) == 0); } DQN_UTEST_TEST("Str16 to Str8: Arena null terminates string") { Dqn_Str8 string8 = Dqn_Win_Str16ToStr8(tmem.arena, input16); int size_returned = Dqn_Win_Str16ToStr8Buffer(input16, nullptr, 0); char const EXPECTED[] = {'S', 't', 'r', 'i', 'n', 'g', 0}; DQN_UTEST_ASSERTF(&test, DQN_CAST(int)string8.size == size_returned, "string_size: %d, result: %d", DQN_CAST(int)string8.size, size_returned); DQN_UTEST_ASSERTF(&test, DQN_CAST(int)string8.size == DQN_ARRAY_UCOUNT(EXPECTED) - 1, "string_size: %d, expected: %zu", DQN_CAST(int)string8.size, DQN_ARRAY_UCOUNT(EXPECTED) - 1); DQN_UTEST_ASSERT (&test, DQN_MEMCMP(EXPECTED, string8.data, sizeof(EXPECTED)) == 0); } } return test; } #endif // DQN_PLATFORM_WIN#@ void Dqn_Test_RunSuite() { Dqn_UTest tests[] = { Dqn_Test_Base(), Dqn_Test_Arena(), Dqn_Test_Bin(), Dqn_Test_BinarySearch(), Dqn_Test_DSMap(), Dqn_Test_FStr8(), Dqn_Test_Fs(), Dqn_Test_FixedArray(), Dqn_Test_Intrinsics(), #if defined(DQN_UNIT_TESTS_WITH_KECCAK) Dqn_Test_Keccak(), #endif Dqn_Test_M4(), Dqn_Test_OS(), Dqn_Test_Rect(), Dqn_Test_Str8(), Dqn_Test_TicketMutex(), Dqn_Test_VArray(), #if defined(DQN_PLATFORM_WIN32) Dqn_Test_Win(), #endif }; int total_tests = 0; int total_good_tests = 0; for (const Dqn_UTest &test : tests) { total_tests += test.num_tests_in_group; total_good_tests += test.num_tests_ok_in_group; } fprintf(stdout, "Summary: %d/%d tests succeeded\n", total_good_tests, total_tests); } #if defined(DQN_UNIT_TESTS_WITH_MAIN) int main(int argc, char *argv[]) { (void)argv; (void)argc; Dqn_Library_Init(Dqn_LibraryOnInit_LogFeatures); Dqn_Test_RunSuite(); return 0; } #endif