#define DQN_WIN32_IMPLEMENTATION #define DQN_IMPLEMENTATION #include "dqn.h" #define HANDMADE_MATH_IMPLEMENTATION #define HANDMADE_MATH_CPP_MODE #include "tests/HandmadeMath.h" #include void HandmadeMathVerifyMat4(DqnMat4 dqnMat, hmm_mat4 hmmMat) { f32 *hmmMatf = (f32 *)&hmmMat; f32 *dqnMatf = (f32 *)&dqnMat; const u32 EXPECTED_SIZE = 16; u32 totalSize = DQN_ARRAY_COUNT(dqnMat.e) * DQN_ARRAY_COUNT(dqnMat.e[0]); DQN_ASSERT(totalSize == EXPECTED_SIZE); DQN_ASSERT(totalSize == (DQN_ARRAY_COUNT(hmmMat.Elements) * DQN_ARRAY_COUNT(hmmMat.Elements[0]))); for (i32 i = 0; i < EXPECTED_SIZE; i++) DQN_ASSERT(hmmMatf[i] == dqnMatf[i]); } void HandmadeMathTest() { // Test Perspective/Projection matrix values { f32 aspectRatio = 1; DqnMat4 dqnPerspective = DqnMat4_Perspective(90, aspectRatio, 100, 1000); hmm_mat4 hmmPerspective = HMM_Perspective(90, aspectRatio, 100, 1000); HandmadeMathVerifyMat4(dqnPerspective, hmmPerspective); printf("HandmadeMathTest(): Perspective: Completed successfully\n"); } // Test Mat4 translate * scale { hmm_vec3 hmmVec = HMM_Vec3i(1, 2, 3); DqnV3 dqnVec = DqnV3_3i(1, 2, 3); DqnMat4 dqnTranslate = DqnMat4_Translate(dqnVec.x, dqnVec.y, dqnVec.z); hmm_mat4 hmmTranslate = HMM_Translate(hmmVec); HandmadeMathVerifyMat4(dqnTranslate, hmmTranslate); hmm_vec3 hmmAxis = HMM_Vec3(0.5f, 0.2f, 0.7f); DqnV3 dqnAxis = DqnV3_3f(0.5f, 0.2f, 0.7f); f32 rotationInDegrees = 80.0f; // TODO(doyle): ?? Handmade Math does it a rotations in a different way // way, they normalise the given axis producing different results. // HandmadeMathVerifyMat4(dqnRotate, hmmRotate); dqnVec *= 2; hmmVec *= 2; DqnMat4 dqnScale = DqnMat4_Scale(dqnVec.x, dqnVec.y, dqnVec.z); hmm_mat4 hmmScale = HMM_Scale(hmmVec); HandmadeMathVerifyMat4(dqnScale, hmmScale); DqnMat4 dqnTSMatrix = DqnMat4_Mul(dqnTranslate, dqnScale); hmm_mat4 hmmTSMatrix = HMM_MultiplyMat4(hmmTranslate, hmmScale); HandmadeMathVerifyMat4(dqnTSMatrix, hmmTSMatrix); // Test Mat4 * MulV4 { DqnV4 dqnV4 = DqnV4_4f(1, 2, 3, 4); hmm_vec4 hmmV4 = HMM_Vec4(1, 2, 3, 4); DqnV4 dqnResult = DqnMat4_MulV4(dqnTSMatrix, dqnV4); hmm_vec4 hmmResult = HMM_MultiplyMat4ByVec4(hmmTSMatrix, hmmV4); DQN_ASSERT(dqnResult.x == hmmResult.X); DQN_ASSERT(dqnResult.y == hmmResult.Y); DQN_ASSERT(dqnResult.z == hmmResult.Z); DQN_ASSERT(dqnResult.w == hmmResult.W); printf( "HandmadeMathTest(): Mat4 * MulV4: Completed successfully\n"); } printf("HandmadeMathTest(): Translate/Scale/Rotate Mat4_Mul: Completed successfully\n"); } // Test LookAt/Camera/View matrix returns same results { DqnMat4 dqnViewMatrix = DqnMat4_LookAt(DqnV3_3f(4, 3, 3), DqnV3_1f(0), DqnV3_3f(0, 1, 0)); hmm_mat4 hmmViewMatrix = HMM_LookAt(HMM_Vec3(4, 3, 3), HMM_Vec3(0, 0, 0), HMM_Vec3(0, 1, 0)); HandmadeMathVerifyMat4(dqnViewMatrix, hmmViewMatrix); printf("HandmadeMathTest(): LookAt: Completed successfully\n"); } } void StringsTest() { { // Char Checks DQN_ASSERT(DqnChar_IsAlpha('a') == true); DQN_ASSERT(DqnChar_IsAlpha('A') == true); DQN_ASSERT(DqnChar_IsAlpha('0') == false); DQN_ASSERT(DqnChar_IsAlpha('@') == false); DQN_ASSERT(DqnChar_IsAlpha(' ') == false); DQN_ASSERT(DqnChar_IsAlpha('\n') == false); DQN_ASSERT(DqnChar_IsDigit('1') == true); DQN_ASSERT(DqnChar_IsDigit('n') == false); DQN_ASSERT(DqnChar_IsDigit('N') == false); DQN_ASSERT(DqnChar_IsDigit('*') == false); DQN_ASSERT(DqnChar_IsDigit(' ') == false); DQN_ASSERT(DqnChar_IsDigit('\n') == false); DQN_ASSERT(DqnChar_IsAlphaNum('1') == true); DQN_ASSERT(DqnChar_IsAlphaNum('a') == true); DQN_ASSERT(DqnChar_IsAlphaNum('A') == true); DQN_ASSERT(DqnChar_IsAlphaNum('*') == false); DQN_ASSERT(DqnChar_IsAlphaNum(' ') == false); DQN_ASSERT(DqnChar_IsAlphaNum('\n') == false); DQN_ASSERT(DqnChar_ToLower(L'A') == L'a'); DQN_ASSERT(DqnChar_ToLower(L'a') == L'a'); DQN_ASSERT(DqnChar_ToLower(L' ') == L' '); DQN_ASSERT(DqnChar_ToUpper(L'A') == L'A'); DQN_ASSERT(DqnChar_ToUpper(L'a') == L'A'); DQN_ASSERT(DqnChar_ToUpper(L' ') == L' '); printf("StringsTest(): CharChecks: Completed successfully\n"); } // String Checks { // strcmp { char *a = "str_a"; // Check simple compares { DQN_ASSERT(Dqn_strcmp(a, "str_a") == +0); DQN_ASSERT(Dqn_strcmp(a, "str_b") == -1); DQN_ASSERT(Dqn_strcmp("str_b", a) == +1); DQN_ASSERT(Dqn_strcmp(a, "") == +1); DQN_ASSERT(Dqn_strcmp("", "") == 0); // NOTE: Check that the string has not been trashed. DQN_ASSERT(Dqn_strcmp(a, "str_a") == +0); } // Check ops against null { DQN_ASSERT(Dqn_strcmp(NULL, NULL) != +0); DQN_ASSERT(Dqn_strcmp(a, NULL) != +0); DQN_ASSERT(Dqn_strcmp(NULL, a) != +0); } printf("StringsTest(): strcmp: Completed successfully\n"); } // strlen { char *a = "str_a"; DQN_ASSERT(Dqn_strlen(a) == 5); DQN_ASSERT(Dqn_strlen("") == 0); DQN_ASSERT(Dqn_strlen(" a ") == 6); DQN_ASSERT(Dqn_strlen("a\n") == 2); // NOTE: Check that the string has not been trashed. DQN_ASSERT(Dqn_strcmp(a, "str_a") == 0); DQN_ASSERT(Dqn_strlen(NULL) == 0); printf("StringsTest(): strlen: Completed successfully\n"); } // strncpy { { char *a = "str_a"; char b[10] = {}; // Check copy into empty array { char *result = Dqn_strncpy(b, a, Dqn_strlen(a)); DQN_ASSERT(Dqn_strcmp(b, "str_a") == 0); DQN_ASSERT(Dqn_strcmp(a, "str_a") == 0); DQN_ASSERT(Dqn_strcmp(result, "str_a") == 0); DQN_ASSERT(Dqn_strlen(result) == 5); } // Check copy into array offset, overlap with old results { char *newResult = Dqn_strncpy(&b[1], a, Dqn_strlen(a)); DQN_ASSERT(Dqn_strcmp(newResult, "str_a") == 0); DQN_ASSERT(Dqn_strlen(newResult) == 5); DQN_ASSERT(Dqn_strcmp(a, "str_a") == 0); DQN_ASSERT(Dqn_strlen(a) == 5); DQN_ASSERT(Dqn_strcmp(b, "sstr_a") == 0); DQN_ASSERT(Dqn_strlen(b) == 6); } } // Check strncpy with NULL pointers { DQN_ASSERT(Dqn_strncpy(NULL, NULL, 5) == NULL); char *a = "str"; char *result = Dqn_strncpy(a, NULL, 5); DQN_ASSERT(Dqn_strcmp(a, "str") == 0); DQN_ASSERT(Dqn_strcmp(result, "str") == 0); DQN_ASSERT(Dqn_strcmp(result, a) == 0); } // Check strncpy with 0 chars to copy { char *a = "str"; char *b = "ing"; char *result = Dqn_strncpy(a, b, 0); DQN_ASSERT(Dqn_strcmp(a, "str") == 0); DQN_ASSERT(Dqn_strcmp(b, "ing") == 0); DQN_ASSERT(Dqn_strcmp(result, "str") == 0); } printf("StringsTest(): strncpy: Completed successfully\n"); } // StrReverse { // Basic reverse operations { char a[] = "aba"; DQN_ASSERT(Dqn_StrReverse(a, Dqn_strlen(a)) == true); DQN_ASSERT(Dqn_strcmp(a, "aba") == 0); DQN_ASSERT(Dqn_StrReverse(a, 2) == true); DQN_ASSERT(Dqn_strcmp(a, "baa") == 0); DQN_ASSERT(Dqn_StrReverse(a, Dqn_strlen(a)) == true); DQN_ASSERT(Dqn_strcmp(a, "aab") == 0); DQN_ASSERT(Dqn_StrReverse(&a[1], 2) == true); DQN_ASSERT(Dqn_strcmp(a, "aba") == 0); DQN_ASSERT(Dqn_StrReverse(a, 0) == true); DQN_ASSERT(Dqn_strcmp(a, "aba") == 0); } // Try reverse empty string { char a[] = ""; DQN_ASSERT(Dqn_StrReverse(a, Dqn_strlen(a)) == true); DQN_ASSERT(Dqn_strcmp(a, "") == 0); } // Try reverse single char string { char a[] = "a"; DQN_ASSERT(Dqn_StrReverse(a, Dqn_strlen(a)) == true); DQN_ASSERT(Dqn_strcmp(a, "a") == 0); DQN_ASSERT(Dqn_StrReverse(a, 0) == true); DQN_ASSERT(Dqn_strcmp(a, "a") == 0); } printf( "StringsTest(): StrReverse: Completed successfully\n"); } const u64 LARGEST_NUM = (u64)-1; const i64 SMALLEST_NUM = -9223372036854775808LL; // StrToI64 { char *a = "123"; DQN_ASSERT(Dqn_StrToI64(a, Dqn_strlen(a)) == 123); char *b = "-123"; DQN_ASSERT(Dqn_StrToI64(b, Dqn_strlen(b)) == -123); DQN_ASSERT(Dqn_StrToI64(b, 1) == 0); char *c = "-0"; DQN_ASSERT(Dqn_StrToI64(c, Dqn_strlen(c)) == 0); char *d = "+123"; DQN_ASSERT(Dqn_StrToI64(d, Dqn_strlen(d)) == 123); // TODO(doyle): Unsigned conversion #if 0 char *e = "18446744073709551615"; DQN_ASSERT((u64)(Dqn_StrToI64(e, Dqn_strlen(e))) == LARGEST_NUM); #endif char *f = "-9223372036854775808"; DQN_ASSERT(Dqn_StrToI64(f, Dqn_strlen(f)) == SMALLEST_NUM); printf("StringsTest(): StrToI64: Completed successfully\n"); } // i64 to str { char a[DQN_64BIT_NUM_MAX_STR_SIZE] = {}; Dqn_I64ToStr(+100, a, DQN_ARRAY_COUNT(a)); DQN_ASSERT(Dqn_strcmp(a, "100") == 0); char b[DQN_64BIT_NUM_MAX_STR_SIZE] = {}; Dqn_I64ToStr(-100, b, DQN_ARRAY_COUNT(b)); DQN_ASSERT(Dqn_strcmp(b, "-100") == 0); char c[DQN_64BIT_NUM_MAX_STR_SIZE] = {}; Dqn_I64ToStr(0, c, DQN_ARRAY_COUNT(c)); DQN_ASSERT(Dqn_strcmp(c, "0") == 0); #if 0 char d[DQN_64BIT_NUM_MAX_STR_SIZE] = {}; Dqn_I64ToStr(LARGEST_NUM, d, DQN_ARRAY_COUNT(d)); DQN_ASSERT(Dqn_strcmp(d, "18446744073709551615") == 0); #endif char e[DQN_64BIT_NUM_MAX_STR_SIZE] = {}; Dqn_I64ToStr(SMALLEST_NUM, e, DQN_ARRAY_COUNT(e)); DQN_ASSERT(Dqn_strcmp(e, "-9223372036854775808") == 0); printf("StringsTest(): I64ToStr: Completed successfully\n"); } } // StrToF32 { const f32 EPSILON = 0.001f; const char a[] = "-0.66248"; f32 vA = Dqn_StrToF32(a, DQN_ARRAY_COUNT(a)); DQN_ASSERT(DQN_ABS(vA) - DQN_ABS(-0.66248f) < EPSILON); const char b[] = "-0.632053"; f32 vB = Dqn_StrToF32(b, DQN_ARRAY_COUNT(b)); DQN_ASSERT(DQN_ABS(vB) - DQN_ABS(-0.632053f) < EPSILON); const char c[] = "-0.244271"; f32 vC = Dqn_StrToF32(c, DQN_ARRAY_COUNT(c)); DQN_ASSERT(DQN_ABS(vC) - DQN_ABS(-0.244271f) < EPSILON); const char d[] = "-0.511812"; f32 vD = Dqn_StrToF32(d, DQN_ARRAY_COUNT(d)); DQN_ASSERT(DQN_ABS(vD) - DQN_ABS(-0.511812f) < EPSILON); const char e[] = "-0.845392"; f32 vE = Dqn_StrToF32(e, DQN_ARRAY_COUNT(e)); DQN_ASSERT(DQN_ABS(vE) - DQN_ABS(-0.845392f) < EPSILON); const char f[] = "0.127809"; f32 vF = Dqn_StrToF32(f, DQN_ARRAY_COUNT(f)); DQN_ASSERT(DQN_ABS(vF) - DQN_ABS(-0.127809f) < EPSILON); const char g[] = "0.532"; f32 vG = Dqn_StrToF32(g, DQN_ARRAY_COUNT(g)); DQN_ASSERT(DQN_ABS(vG) - DQN_ABS(-0.532f) < EPSILON); const char h[] = "0.923"; f32 vH = Dqn_StrToF32(h, DQN_ARRAY_COUNT(h)); DQN_ASSERT(DQN_ABS(vH) - DQN_ABS(-0.923f) < EPSILON); const char i[] = "0.000"; f32 vI = Dqn_StrToF32(i, DQN_ARRAY_COUNT(i)); DQN_ASSERT(DQN_ABS(vI) - DQN_ABS(-0.000f) < EPSILON); const char j[] = "0.000283538"; f32 vJ = Dqn_StrToF32(j, DQN_ARRAY_COUNT(j)); DQN_ASSERT(DQN_ABS(vJ) - DQN_ABS(-0.000283538f) < EPSILON); const char k[] = "-1.25"; f32 vK = Dqn_StrToF32(k, DQN_ARRAY_COUNT(k)); DQN_ASSERT(DQN_ABS(vK) - DQN_ABS(-1.25f) < EPSILON); const char l[] = "0.286843"; f32 vL = Dqn_StrToF32(l, DQN_ARRAY_COUNT(l)); DQN_ASSERT(DQN_ABS(vL) - DQN_ABS(-0.286843f) < EPSILON); const char m[] = "-0.406"; f32 vM = Dqn_StrToF32(m, DQN_ARRAY_COUNT(m)); DQN_ASSERT(DQN_ABS(vM) - DQN_ABS(-0.406f) < EPSILON); const char n[] = "-0.892"; f32 vN = Dqn_StrToF32(n, DQN_ARRAY_COUNT(n)); DQN_ASSERT(DQN_ABS(vN) - DQN_ABS(-0.892f) < EPSILON); const char o[] = "0.201"; f32 vO = Dqn_StrToF32(o, DQN_ARRAY_COUNT(o)); DQN_ASSERT(DQN_ABS(vO) - DQN_ABS(-0.201f) < EPSILON); const char p[] = "1.25"; f32 vP = Dqn_StrToF32(p, DQN_ARRAY_COUNT(p)); DQN_ASSERT(DQN_ABS(vP) - DQN_ABS(1.25f) < EPSILON); const char q[] = "9.64635e-05"; f32 vQ = Dqn_StrToF32(q, DQN_ARRAY_COUNT(q)); DQN_ASSERT(DQN_ABS(vQ) - DQN_ABS(9.64635e-05) < EPSILON); const char r[] = "9.64635e+05"; f32 vR = Dqn_StrToF32(q, DQN_ARRAY_COUNT(q)); DQN_ASSERT(DQN_ABS(vR) - DQN_ABS(9.64635e+05) < EPSILON); printf("StringsTest(): StrToF32: Completed successfully\n"); } { { char *a = "Microsoft"; char *b = "icro"; i32 lenA = Dqn_strlen(a); i32 lenB = Dqn_strlen(b); DQN_ASSERT(Dqn_StrHasSubstring(a, lenA, b, lenB) == true); DQN_ASSERT(Dqn_StrHasSubstring(a, lenA, "iro", Dqn_strlen("iro")) == false); DQN_ASSERT(Dqn_StrHasSubstring(b, lenB, a, lenA) == false); DQN_ASSERT(Dqn_StrHasSubstring("iro", Dqn_strlen("iro"), a, lenA) == false); DQN_ASSERT(Dqn_StrHasSubstring("", 0, "iro", 4) == false); DQN_ASSERT(Dqn_StrHasSubstring("", 0, "", 0) == false); DQN_ASSERT(Dqn_StrHasSubstring(NULL, 0, NULL, 0) == false); } { char *a = "Micro"; char *b = "irob"; i32 lenA = Dqn_strlen(a); i32 lenB = Dqn_strlen(b); DQN_ASSERT(Dqn_StrHasSubstring(a, lenA, b, lenB) == false); DQN_ASSERT(Dqn_StrHasSubstring(b, lenB, a, lenA) == false); } printf("StringsTest(): StrHasSubstring: Completed successfully\n"); } // UCS <-> UTF8 Checks { // Test ascii characters { u32 codepoint = '@'; u32 string[1] = {}; u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint); DQN_ASSERT(bytesUsed == 1); DQN_ASSERT(string[0] == '@'); bytesUsed = Dqn_UTF8ToUCS(&string[0], codepoint); DQN_ASSERT(string[0] >= 0 && string[0] < 0x80); DQN_ASSERT(bytesUsed == 1); } // Test 2 byte characters { u32 codepoint = 0x278; u32 string[1] = {}; u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint); DQN_ASSERT(bytesUsed == 2); DQN_ASSERT(string[0] == 0xC9B8); bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]); DQN_ASSERT(string[0] == codepoint); DQN_ASSERT(bytesUsed == 2); } // Test 3 byte characters { u32 codepoint = 0x0A0A; u32 string[1] = {}; u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint); DQN_ASSERT(bytesUsed == 3); DQN_ASSERT(string[0] == 0xE0A88A); bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]); DQN_ASSERT(string[0] == codepoint); DQN_ASSERT(bytesUsed == 3); } // Test 4 byte characters { u32 codepoint = 0x10912; u32 string[1] = {}; u32 bytesUsed = Dqn_UCSToUTF8(&string[0], codepoint); DQN_ASSERT(bytesUsed == 4); DQN_ASSERT(string[0] == 0xF090A492); bytesUsed = Dqn_UTF8ToUCS(&string[0], string[0]); DQN_ASSERT(string[0] == codepoint); DQN_ASSERT(bytesUsed == 4); } { u32 codepoint = 0x10912; u32 bytesUsed = Dqn_UCSToUTF8(NULL, codepoint); DQN_ASSERT(bytesUsed == 0); bytesUsed = Dqn_UTF8ToUCS(NULL, codepoint); DQN_ASSERT(bytesUsed == 0); } printf("StringsTest(): ucs <-> utf8: Completed successfully\n"); } printf("StringsTest(): Completed successfully\n"); } #define WIN32_LEAN_AND_MEAN #include void OtherTest() { { // Test Win32 Sleep // NOTE: Win32 Sleep is not granular to a certain point so sleep excessively u32 sleepInMs = 1000; f64 startInMs = DqnTime_NowInMs(); Sleep(sleepInMs); f64 endInMs = DqnTime_NowInMs(); DQN_ASSERT(startInMs < endInMs); printf("OtherTest(): TimeNow: Completed successfully\n"); } printf("OtherTest(): Completed successfully\n"); } void RandomTest() { DqnRandPCGState pcg; DqnRnd_PCGInit(&pcg); for (i32 i = 0; i < 10; i++) { i32 min = -100; i32 max = 100000; i32 result = DqnRnd_PCGRange(&pcg, min, max); DQN_ASSERT(result >= min && result <= max) f32 randF32 = DqnRnd_PCGNextf(&pcg); DQN_ASSERT(randF32 >= 0.0f && randF32 <= 1.0f); printf("RandomTest(): RndPCG: Completed successfully\n"); } printf("RandomTest(): Completed successfully\n"); } void MathTest() { { // Lerp { f32 start = 10; f32 t = 0.5f; f32 end = 20; DQN_ASSERT(DqnMath_Lerp(start, t, end) == 15); } { f32 start = 10; f32 t = 2.0f; f32 end = 20; DQN_ASSERT(DqnMath_Lerp(start, t, end) == 30); } printf("MathTest(): Lerp: Completed successfully\n"); } { // sqrtf DQN_ASSERT(DqnMath_Sqrtf(4.0f) == 2.0f); printf("MathTest(): Sqrtf: Completed successfully\n"); } printf("MathTest(): Completed successfully\n"); } void VecTest() { { // V2 // V2 Creating { DqnV2 vec = DqnV2_2f(5.5f, 5.0f); DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f); DQN_ASSERT(vec.w == 5.5f && vec.h == 5.0f); } // V2 with 2 integers { DqnV2 vec = DqnV2_2i(3, 5); DQN_ASSERT(vec.x == 3 && vec.y == 5.0f); DQN_ASSERT(vec.w == 3 && vec.h == 5.0f); } // V2 Arithmetic { DqnV2 vecA = DqnV2_2f(5, 10); DqnV2 vecB = DqnV2_2i(2, 3); DQN_ASSERT(DqnV2_Equals(vecA, vecB) == false); DQN_ASSERT(DqnV2_Equals(vecA, DqnV2_2f(5, 10)) == true); DQN_ASSERT(DqnV2_Equals(vecB, DqnV2_2f(2, 3)) == true); DqnV2 result = DqnV2_Add(vecA, DqnV2_2f(5, 10)); DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(10, 20)) == true); result = DqnV2_Sub(result, DqnV2_2f(5, 10)); DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(5, 10)) == true); result = DqnV2_Scalef(result, 5); DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(25, 50)) == true); result = DqnV2_Hadamard(result, DqnV2_2f(10, 0.5f)); DQN_ASSERT(DqnV2_Equals(result, DqnV2_2f(250, 25)) == true); f32 dotResult = DqnV2_Dot(DqnV2_2f(5, 10), DqnV2_2f(3, 4)); DQN_ASSERT(dotResult == 55); } // Test operator overloading { DqnV2 vecA = DqnV2_2f(5, 10); DqnV2 vecB = DqnV2_2i(2, 3); DQN_ASSERT((vecA == vecB) == false); DQN_ASSERT((vecA == DqnV2_2f(5, 10)) == true); DQN_ASSERT((vecB == DqnV2_2f(2, 3)) == true); DqnV2 result = vecA + DqnV2_2f(5, 10); DQN_ASSERT((result == DqnV2_2f(10, 20)) == true); result -= DqnV2_2f(5, 10); DQN_ASSERT((result == DqnV2_2f(5, 10)) == true); result *= 5; DQN_ASSERT((result == DqnV2_2f(25, 50)) == true); result = result * DqnV2_2f(10, 0.5f); DQN_ASSERT((result == DqnV2_2f(250, 25)) == true); result += DqnV2_2f(1, 1); DQN_ASSERT((result == DqnV2_2f(251, 26)) == true); result = result - DqnV2_2f(1, 1); DQN_ASSERT((result == DqnV2_2f(250, 25)) == true); } // V2 Properties { DqnV2 a = DqnV2_2f(0, 0); DqnV2 b = DqnV2_2f(3, 4); f32 lengthSq = DqnV2_LengthSquared(a, b); DQN_ASSERT(lengthSq == 25); f32 length = DqnV2_Length(a, b); DQN_ASSERT(length == 5); DqnV2 normalised = DqnV2_Normalise(b); DQN_ASSERT(normalised.x == (b.x / 5.0f)); DQN_ASSERT(normalised.y == (b.y / 5.0f)); DqnV2 c = DqnV2_2f(3.5f, 8.0f); DQN_ASSERT(DqnV2_Overlaps(b, c) == true); DQN_ASSERT(DqnV2_Overlaps(b, a) == false); DqnV2 d = DqnV2_Perpendicular(c); DQN_ASSERT(DqnV2_Dot(c, d) == 0); } { // constrain_to_ratio DqnV2 ratio = DqnV2_2f(16, 9); DqnV2 dim = DqnV2_2f(2000, 1080); DqnV2 result = DqnV2_ConstrainToRatio(dim, ratio); DQN_ASSERT(result.w == 1920 && result.h == 1080); } printf("VecTest(): Vec2: Completed successfully\n"); } { // V3 // V3i Creating { DqnV3 vec = DqnV3_3f(5.5f, 5.0f, 5.875f); DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f); DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f); } // V3i Creating { DqnV3 vec = DqnV3_3i(3, 4, 5); DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5); DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5); } // V3 Arithmetic { DqnV3 vecA = DqnV3_3f(5, 10, 15); DqnV3 vecB = DqnV3_3f(2, 3, 6); DQN_ASSERT(DqnV3_Equals(vecA, vecB) == false); DQN_ASSERT(DqnV3_Equals(vecA, DqnV3_3f(5, 10, 15)) == true); DQN_ASSERT(DqnV3_Equals(vecB, DqnV3_3f(2, 3, 6)) == true); DqnV3 result = DqnV3_Add(vecA, DqnV3_3f(5, 10, 15)); DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(10, 20, 30)) == true); result = DqnV3_Sub(result, DqnV3_3f(5, 10, 15)); DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(5, 10, 15)) == true); result = DqnV3_Scalef(result, 5); DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(25, 50, 75)) == true); result = DqnV3_Hadamard(result, DqnV3_3f(10.0f, 0.5f, 10.0f)); DQN_ASSERT(DqnV3_Equals(result, DqnV3_3f(250, 25, 750)) == true); f32 dotResult = DqnV3_Dot(DqnV3_3f(5, 10, 2), DqnV3_3f(3, 4, 6)); DQN_ASSERT(dotResult == 67); DqnV3 cross = DqnV3_Cross(vecA, vecB); DQN_ASSERT(DqnV3_Equals(cross, DqnV3_3f(15, 0, -5)) == true); } { DqnV3 vecA = DqnV3_3f(5, 10, 15); DqnV3 vecB = DqnV3_3f(2, 3, 6); DQN_ASSERT((vecA == vecB) == false); DQN_ASSERT((vecA == DqnV3_3f(5, 10, 15)) == true); DQN_ASSERT((vecB == DqnV3_3f(2, 3, 6)) == true); DqnV3 result = vecA + DqnV3_3f(5, 10, 15); DQN_ASSERT((result == DqnV3_3f(10, 20, 30)) == true); result -= DqnV3_3f(5, 10, 15); DQN_ASSERT((result == DqnV3_3f(5, 10, 15)) == true); result = result * 5; DQN_ASSERT((result == DqnV3_3f(25, 50, 75)) == true); result *= DqnV3_3f(10.0f, 0.5f, 10.0f); DQN_ASSERT((result == DqnV3_3f(250, 25, 750)) == true); result = result - DqnV3_3f(1, 1, 1); DQN_ASSERT((result == DqnV3_3f(249, 24, 749)) == true); result += DqnV3_3f(1, 1, 1); DQN_ASSERT((result == DqnV3_3f(250, 25, 750)) == true); } printf("VecTest(): Vec3: Completed successfully\n"); } { // V4 // V4 Creating { DqnV4 vec = DqnV4_4f(5.5f, 5.0f, 5.875f, 5.928f); DQN_ASSERT(vec.x == 5.5f && vec.y == 5.0f && vec.z == 5.875f && vec.w == 5.928f); DQN_ASSERT(vec.r == 5.5f && vec.g == 5.0f && vec.b == 5.875f && vec.a == 5.928f); } // V4i Creating { DqnV4 vec = DqnV4_4i(3, 4, 5, 6); DQN_ASSERT(vec.x == 3 && vec.y == 4 && vec.z == 5 && vec.w == 6); DQN_ASSERT(vec.r == 3 && vec.g == 4 && vec.b == 5 && vec.a == 6); } // V4 Arithmetic { DqnV4 vecA = DqnV4_4f(5, 10, 15, 20); DqnV4 vecB = DqnV4_4i(2, 3, 6, 8); DQN_ASSERT(DqnV4_Equals(vecA, vecB) == false); DQN_ASSERT(DqnV4_Equals(vecA, DqnV4_4f(5, 10, 15, 20)) == true); DQN_ASSERT(DqnV4_Equals(vecB, DqnV4_4f(2, 3, 6, 8)) == true); DqnV4 result = DqnV4_Add(vecA, DqnV4_4f(5, 10, 15, 20)); DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(10, 20, 30, 40)) == true); result = DqnV4_Sub(result, DqnV4_4f(5, 10, 15, 20)); DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(5, 10, 15, 20)) == true); result = DqnV4_Scalef(result, 5); DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(25, 50, 75, 100)) == true); result = DqnV4_Hadamard(result, DqnV4_4f(10, 0.5f, 10, 0.25f)); DQN_ASSERT(DqnV4_Equals(result, DqnV4_4f(250, 25, 750, 25)) == true); f32 dotResult = DqnV4_Dot(DqnV4_4f(5, 10, 2, 8), DqnV4_4f(3, 4, 6, 5)); DQN_ASSERT(dotResult == 107); } { DqnV4 vecA = DqnV4_4f(5, 10, 15, 20); DqnV4 vecB = DqnV4_4i(2, 3, 6, 8); DQN_ASSERT((vecA == vecB) == false); DQN_ASSERT((vecA == DqnV4_4f(5, 10, 15, 20)) == true); DQN_ASSERT((vecB == DqnV4_4f(2, 3, 6, 8)) == true); DqnV4 result = vecA + DqnV4_4f(5, 10, 15, 20); DQN_ASSERT((result == DqnV4_4f(10, 20, 30, 40)) == true); result = result - DqnV4_4f(5, 10, 15, 20); DQN_ASSERT((result == DqnV4_4f(5, 10, 15, 20)) == true); result = result * 5; DQN_ASSERT((result == DqnV4_4f(25, 50, 75, 100)) == true); result *= DqnV4_4f(10, 0.5f, 10, 0.25f); DQN_ASSERT((result == DqnV4_4f(250, 25, 750, 25)) == true); result += DqnV4_4f(1, 1, 1, 1); DQN_ASSERT((result == DqnV4_4f(251, 26, 751, 26)) == true); result -= DqnV4_4f(1, 1, 1, 1); DQN_ASSERT((result == DqnV4_4f(250, 25, 750, 25)) == true); } printf("VecTest(): Vec4: Completed successfully\n"); } // Rect { // Test rect init functions { DqnRect rect4f = DqnRect_4f(1.1f, 2.2f, 3.3f, 4.4f); DqnRect rect4i = DqnRect_4i(1, 2, 3, 4); DQN_ASSERT(rect4i.min.x == 1 && rect4i.min.y == 2); DQN_ASSERT(rect4i.max.x == 3 && rect4i.max.y == 4); DQN_ASSERT(rect4f.min.x == 1.1f && rect4f.min.y == 2.2f); DQN_ASSERT(rect4f.max.x == 3.3f && rect4f.max.y == 4.4f); DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20)); DQN_ASSERT(DqnV2_Equals(rect.min, DqnV2_2f(-10, -10))); DQN_ASSERT(DqnV2_Equals(rect.max, DqnV2_2f(10, 10))); } // Test rect get size function { // Test float rect { DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20)); f32 width, height; DqnRect_GetSize2f(rect, &width, &height); DQN_ASSERT(width == 20); DQN_ASSERT(height == 20); DqnV2 dim = DqnRect_GetSizeV2(rect); DQN_ASSERT(DqnV2_Equals(dim, DqnV2_2f(20, 20))); } // Test rect with float values and GetSize as 2 integers { DqnRect rect = DqnRect_Init(DqnV2_2f(-10.5f, -10.5f), DqnV2_2f(20.5f, 20.5f)); i32 width, height; DqnRect_GetSize2i(rect, &width, &height); DQN_ASSERT(width == 20); DQN_ASSERT(height == 20); } } // Test rect get centre DqnRect rect = DqnRect_Init(DqnV2_2f(-10, -10), DqnV2_2f(20, 20)); DqnV2 rectCenter = DqnRect_GetCentre(rect); DQN_ASSERT(DqnV2_Equals(rectCenter, DqnV2_2f(0, 0))); // Test clipping rect get centre DqnRect clipRect = DqnRect_4i(-15, -15, 10, 10); DqnRect clipResult = DqnRect_ClipRect(rect, clipRect); DQN_ASSERT(clipResult.min.x == -10 && clipResult.min.y == -10); DQN_ASSERT(clipResult.max.x == 10 && clipResult.max.y == 10); // Test shifting rect { DqnRect shiftedRect = DqnRect_Move(rect, DqnV2_2f(10, 0)); DQN_ASSERT(DqnV2_Equals(shiftedRect.min, DqnV2_2f(0, -10))); DQN_ASSERT(DqnV2_Equals(shiftedRect.max, DqnV2_2f(20, 10))); // Ensure dimensions have remained the same { f32 width, height; DqnRect_GetSize2f(shiftedRect, &width, &height); DQN_ASSERT(width == 20); DQN_ASSERT(height == 20); DqnV2 dim = DqnRect_GetSizeV2(shiftedRect); DQN_ASSERT(DqnV2_Equals(dim, DqnV2_2f(20, 20))); } // Test rect contains p { DqnV2 inP = DqnV2_2f(5, 5); DqnV2 outP = DqnV2_2f(100, 100); DQN_ASSERT(DqnRect_ContainsP(shiftedRect, inP)); DQN_ASSERT(!DqnRect_ContainsP(shiftedRect, outP)); } } printf("VecTest(): Rect: Completed successfully\n"); } printf("VecTest(): Completed successfully\n"); } void ArrayTestMemAPIInternal(DqnArray *array, DqnMemAPI memAPI) { { DQN_ASSERT(DqnArray_Init(array, 1, memAPI)); DQN_ASSERT(array->capacity == 1); DQN_ASSERT(array->count == 0); // Test basic insert { DqnV2 va = DqnV2_2f(5, 10); DQN_ASSERT(DqnArray_Push(array, va)); DqnV2 vb = array->data[0]; DQN_ASSERT(DqnV2_Equals(va, vb)); DQN_ASSERT(array->capacity == 1); DQN_ASSERT(array->count == 1); } // Test array resizing and freeing { DqnV2 va = DqnV2_2f(10, 15); DQN_ASSERT(DqnArray_Push(array, va)); DqnV2 vb = array->data[0]; DQN_ASSERT(DqnV2_Equals(va, vb) == false); vb = array->data[1]; DQN_ASSERT(DqnV2_Equals(va, vb) == true); DQN_ASSERT(array->capacity == 2); DQN_ASSERT(array->count == 2); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 3); DQN_ASSERT(array->count == 3); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 4); DQN_ASSERT(array->count == 4); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 5); DQN_ASSERT(array->count == 5); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 6); DQN_ASSERT(array->count == 6); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 7); DQN_ASSERT(array->count == 7); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 8); DQN_ASSERT(array->count == 8); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 9); DQN_ASSERT(array->count == 9); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 10); DQN_ASSERT(array->count == 10); DQN_ASSERT(DqnArray_Push(array, va)); DQN_ASSERT(array->capacity == 12); DQN_ASSERT(array->count == 11); DqnV2 vc = DqnV2_2f(90, 100); DQN_ASSERT(DqnArray_Push(array, vc)); DQN_ASSERT(array->capacity == 12); DQN_ASSERT(array->count == 12); DQN_ASSERT(DqnV2_Equals(vc, array->data[11])); } } DQN_ASSERT(DqnArray_Free(array)); { DQN_ASSERT(DqnArray_Init(array, 1, memAPI)); DQN_ASSERT(array->capacity == 1); DQN_ASSERT(array->count == 0); } DQN_ASSERT(DqnArray_Free(array)); { DqnV2 a = DqnV2_2f(1, 2); DqnV2 b = DqnV2_2f(3, 4); DqnV2 c = DqnV2_2f(5, 6); DqnV2 d = DqnV2_2f(7, 8); DQN_ASSERT(DqnArray_Init(array, 16, memAPI)); DQN_ASSERT(DqnArray_Remove(array, 0) == false); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 0); DQN_ASSERT(DqnArray_Clear(array)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 0); DQN_ASSERT(DqnArray_Push(array, a)); DQN_ASSERT(DqnArray_Push(array, b)); DQN_ASSERT(DqnArray_Push(array, c)); DQN_ASSERT(DqnArray_Push(array, d)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 4); DQN_ASSERT(DqnArray_Remove(array, 0)); DQN_ASSERT(DqnV2_Equals(array->data[0], d)); DQN_ASSERT(DqnV2_Equals(array->data[1], b)); DQN_ASSERT(DqnV2_Equals(array->data[2], c)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 3); DQN_ASSERT(DqnArray_Remove(array, 2)); DQN_ASSERT(DqnV2_Equals(array->data[0], d)); DQN_ASSERT(DqnV2_Equals(array->data[1], b)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 2); DQN_ASSERT(DqnArray_Remove(array, 100) == false); DQN_ASSERT(DqnV2_Equals(array->data[0], d)); DQN_ASSERT(DqnV2_Equals(array->data[1], b)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 2); DQN_ASSERT(DqnArray_Clear(array)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 0); } DQN_ASSERT(DqnArray_Free(array)); { DqnV2 a = DqnV2_2f(1, 2); DqnV2 b = DqnV2_2f(3, 4); DqnV2 c = DqnV2_2f(5, 6); DqnV2 d = DqnV2_2f(7, 8); DQN_ASSERT(DqnArray_Init(array, 16, memAPI)); DQN_ASSERT(DqnArray_Push(array, a)); DQN_ASSERT(DqnArray_Push(array, b)); DQN_ASSERT(DqnArray_Push(array, c)); DQN_ASSERT(DqnArray_Push(array, d)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 4); DqnArray_RemoveStable(array, 0); DQN_ASSERT(DqnV2_Equals(array->data[0], b)); DQN_ASSERT(DqnV2_Equals(array->data[1], c)); DQN_ASSERT(DqnV2_Equals(array->data[2], d)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 3); DqnArray_RemoveStable(array, 1); DQN_ASSERT(DqnV2_Equals(array->data[0], b)); DQN_ASSERT(DqnV2_Equals(array->data[1], d)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 2); DqnArray_RemoveStable(array, 1); DQN_ASSERT(DqnV2_Equals(array->data[0], b)); DQN_ASSERT(array->capacity == 16); DQN_ASSERT(array->count == 1); } DQN_ASSERT(DqnArray_Free(array)); printf("ArrayTestMemAPIInternal(): Completed successfully\n"); } void ArrayTest() { DqnArray array = {}; ArrayTestMemAPIInternal(&array, DqnMemAPI_DefaultUseCalloc()); printf("ArrayTest(): Completed successfully\n"); } void FileTest() { // File i/o { { DqnFile file = {}; DQN_ASSERT(DqnFile_Open( ".clang-format", &file, (DqnFilePermissionFlag_Write | DqnFilePermissionFlag_Read), DqnFileAction_OpenOnly)); DQN_ASSERT(file.size == 1320); u8 *buffer = (u8 *)calloc(1, (size_t)file.size * sizeof(u8)); DQN_ASSERT(DqnFile_Read(file, buffer, (u32)file.size) == file.size); free(buffer); DqnFile_Close(&file); DQN_ASSERT(!file.handle && file.size == 0 && file.permissionFlags == 0); } { DqnFile file = {}; DQN_ASSERT(!DqnFile_Open( "asdljasdnel;kajdf", &file, (DqnFilePermissionFlag_Write | DqnFilePermissionFlag_Read), DqnFileAction_OpenOnly)); DQN_ASSERT(file.size == 0); DQN_ASSERT(file.permissionFlags == 0); DQN_ASSERT(!file.handle); printf("FileTest(): FileIO: Completed successfully\n"); } } { u32 numFiles; char **filelist = DqnDir_Read("*", &numFiles); printf("FileTest(): DirRead: Display read files\n"); for (u32 i = 0; i < numFiles; i++) printf("FileTest(): DirRead: %s\n", filelist[i]); DqnDir_ReadFree(filelist, numFiles); printf("FileTest(): DirRead: Completed successfully\n"); } printf("FileTest(): Completed successfully\n"); } void MemStackTest() { // Test over allocation, alignments, temp regions { size_t allocSize = DQN_KILOBYTE(1); DqnMemStack stack = {}; const u32 ALIGNMENT = 4; DqnMemStack_Init(&stack, allocSize, false, ALIGNMENT); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == allocSize); DQN_ASSERT(stack.block->used == 0); DQN_ASSERT(stack.byteAlign == ALIGNMENT); // Alocate A size_t sizeA = (size_t)(allocSize * 0.5f); void *resultA = DqnMemStack_Push(&stack, sizeA); u64 resultAddrA = *((u64 *)resultA); DQN_ASSERT(resultAddrA % ALIGNMENT == 0); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == allocSize); DQN_ASSERT(stack.block->used >= sizeA + 0 && stack.block->used <= sizeA + 3); DQN_ASSERT(stack.byteAlign == ALIGNMENT); DQN_ASSERT(resultA); u8 *ptrA = (u8 *)resultA; for (u32 i = 0; i < sizeA; i++) ptrA[i] = 1; DqnMemStackBlock *blockA = stack.block; // Alocate B size_t sizeB = (size_t)(allocSize * 2.0f); void *resultB = DqnMemStack_Push(&stack, sizeB); u64 resultAddrB = *((u64 *)resultB); DQN_ASSERT(resultAddrB % ALIGNMENT == 0); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == DQN_KILOBYTE(2)); // Since we alignment the pointers we return they can be within 0-3 // bytes of what we expect and since this is in a new block as well used // will reflect just this allocation. DQN_ASSERT(stack.block->used >= sizeB + 0 && stack.block->used <= sizeB + 3); DQN_ASSERT(resultB); u8 *ptrB = (u8 *)resultB; for (u32 i = 0; i < sizeB; i++) ptrB[i] = 2; // Check that a new block was created since there wasn't enough space DQN_ASSERT(stack.block->prevBlock == blockA); DQN_ASSERT(stack.block != blockA); DQN_ASSERT(stack.byteAlign == ALIGNMENT); DQN_ASSERT(blockA->used == sizeA); DqnMemStackBlock *blockB = stack.block; // Check temp regions work DqnTempMemStack tempBuffer = DqnMemStack_BeginTempRegion(&stack); size_t sizeC = 1024 + 1; void *resultC = DqnMemStack_Push(tempBuffer.stack, sizeC); u64 resultAddrC = *((u64 *)resultC); DQN_ASSERT(resultAddrC % ALIGNMENT == 0); DQN_ASSERT(stack.block != blockB && stack.block != blockA); DQN_ASSERT(stack.block->used >= sizeC + 0 && stack.block->used <= sizeC + 3); DQN_ASSERT(stack.tempStackCount == 1); DQN_ASSERT(stack.byteAlign == ALIGNMENT); // NOTE: Allocation should be aligned to 4 byte boundary DQN_ASSERT(tempBuffer.stack->block->size == 2048); u8 *ptrC = (u8 *)resultC; for (u32 i = 0; i < sizeC; i++) ptrC[i] = 3; // Check that a new block was created since there wasn't enough space DQN_ASSERT(stack.block->prevBlock == blockB); DQN_ASSERT(stack.block != blockB); DQN_ASSERT(stack.byteAlign == ALIGNMENT); for (u32 i = 0; i < sizeA; i++) DQN_ASSERT(ptrA[i] == 1); for (u32 i = 0; i < sizeB; i++) DQN_ASSERT(ptrB[i] == 2); for (u32 i = 0; i < sizeC; i++) DQN_ASSERT(ptrC[i] == 3); // End temp region which should revert back to 2 linked stacks, A and B DqnMemStack_EndTempRegion(tempBuffer); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == sizeB); DQN_ASSERT(stack.block->used >= sizeB + 0 && stack.block->used <= sizeB + 3); DQN_ASSERT(stack.tempStackCount == 0); DQN_ASSERT(resultB); DQN_ASSERT(stack.block->prevBlock == blockA); DQN_ASSERT(stack.block != blockA); DQN_ASSERT(blockA->used == sizeA); DQN_ASSERT(stack.byteAlign == ALIGNMENT); // Release the last linked stack from the push stack DqnMemStack_FreeLastBlock(&stack); // Which should return back to the 1st allocation DQN_ASSERT(stack.block == blockA); DQN_ASSERT(stack.block->memory); DQN_ASSERT(stack.block->size == allocSize); DQN_ASSERT(stack.block->used == sizeA); DQN_ASSERT(stack.byteAlign == ALIGNMENT); // Free once more to release stack A memory DqnMemStack_FreeLastBlock(&stack); DQN_ASSERT(!stack.block); DQN_ASSERT(stack.byteAlign == ALIGNMENT); DQN_ASSERT(stack.tempStackCount == 0); } // Test stack with fixed memory does not allocate more { u8 memory[DQN_KILOBYTE(1)] = {}; DqnMemStack stack = {}; const u32 ALIGNMENT = 4; DqnMemStack_InitWithFixedMem(&stack, memory, DQN_ARRAY_COUNT(memory), ALIGNMENT); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == DQN_ARRAY_COUNT(memory) - sizeof(DqnMemStackBlock)); DQN_ASSERT(stack.block->used == 0); DQN_ASSERT(stack.byteAlign == ALIGNMENT); // Allocation larger than stack mem size should fail DQN_ASSERT(!DqnMemStack_Push(&stack, DQN_ARRAY_COUNT(memory) * 2)); // Check free does nothing DqnMemStack_Free(&stack); DqnMemStack_FreeLastBlock(&stack); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == DQN_ARRAY_COUNT(memory) - sizeof(DqnMemStackBlock)); DQN_ASSERT(stack.block->used == 0); DQN_ASSERT(stack.byteAlign == ALIGNMENT); } // Test stack with fixed size, allocates once from platform but does not // grow further { size_t allocSize = DQN_KILOBYTE(1); DqnMemStack stack = {}; const u32 ALIGNMENT = 4; DqnMemStack_InitWithFixedSize(&stack, allocSize, false, ALIGNMENT); DQN_ASSERT(stack.block && stack.block->memory); DQN_ASSERT(stack.block->size == allocSize); DQN_ASSERT(stack.block->used == 0); DQN_ASSERT(stack.byteAlign == ALIGNMENT); void *result = DqnMemStack_Push(&stack, (size_t)(0.5f * allocSize)); DQN_ASSERT(result); // Allocating more should fail DQN_ASSERT(!DqnMemStack_Push(&stack, allocSize)); // Freeing should work DqnMemStack_Free(&stack); DQN_ASSERT(!stack.block); } // Test freeing/clear block and alignment { size_t firstBlockSize = DQN_KILOBYTE(1); DqnMemStack stack = {}; const u32 ALIGNMENT = 16; DqnMemStack_Init(&stack, firstBlockSize, false, ALIGNMENT); DqnMemStackBlock *firstBlock = stack.block; u8 *first = NULL; { u32 allocate40Bytes = 40; u8 *data = (u8 *)DqnMemStack_Push(&stack, allocate40Bytes); // Test that the allocation got aligned to 16 byte boundary DQN_ASSERT(data); DQN_ASSERT(stack.block->size == firstBlockSize); DQN_ASSERT((size_t)data % ALIGNMENT == 0); for (u32 i = 0; i < allocate40Bytes; i++) data[i] = 'a'; // Clear the block, but don't zero it out DqnMemStack_ClearCurrBlock(&stack, false); for (u32 i = 0; i < allocate40Bytes; i++) DQN_ASSERT(data[i] == 'a'); // Test clear reverted the use pointer DQN_ASSERT(stack.block->used == 0); DQN_ASSERT(stack.block->size == firstBlockSize); // Reallocate the data data = (u8 *)DqnMemStack_Push(&stack, firstBlockSize); DQN_ASSERT(stack.block->size == firstBlockSize); DQN_ASSERT((size_t)data % ALIGNMENT == 0); // Fill with 'b's for (u32 i = 0; i < firstBlockSize; i++) data[i] = 'b'; // Clear block and zero it out DqnMemStack_ClearCurrBlock(&stack, true); for (u32 i = 0; i < firstBlockSize; i++) DQN_ASSERT(data[i] == 0); // General Check stack struct contains the values we expect from // initialisation DQN_ASSERT(stack.flags == 0); DQN_ASSERT(stack.tempStackCount == 0); DQN_ASSERT(stack.byteAlign == ALIGNMENT); DQN_ASSERT(stack.block->size == firstBlockSize); // Write out data to current block data = (u8 *)DqnMemStack_Push(&stack, firstBlockSize); for (u32 i = 0; i < firstBlockSize; i++) data[i] = 'c'; first = data; } // Force it to allocate three new blocks and write out data to each size_t secondBlockSize = DQN_KILOBYTE(2); u8 *second = (u8 *)DqnMemStack_Push(&stack, secondBlockSize); DqnMemStackBlock *secondBlock = stack.block; for (u32 i = 0; i < secondBlockSize; i++) second[i] = 'd'; size_t thirdBlockSize = DQN_KILOBYTE(3); u8 *third = (u8 *)DqnMemStack_Push(&stack, thirdBlockSize); DqnMemStackBlock *thirdBlock = stack.block; for (u32 i = 0; i < thirdBlockSize; i++) third[i] = 'e'; size_t fourthBlockSize = DQN_KILOBYTE(4); u8 *fourth = (u8 *)DqnMemStack_Push(&stack, fourthBlockSize); DqnMemStackBlock *fourthBlock = stack.block; for (u32 i = 0; i < fourthBlockSize; i++) fourth[i] = 'f'; DQN_ASSERT((firstBlock != secondBlock) && (secondBlock != thirdBlock) && (thirdBlock != fourthBlock)); DQN_ASSERT(firstBlock->prevBlock == NULL); DQN_ASSERT(secondBlock->prevBlock == firstBlock); DQN_ASSERT(thirdBlock->prevBlock == secondBlock); DQN_ASSERT(fourthBlock->prevBlock == thirdBlock); // NOTE: Making blocks manually is not really recommended .. // Try and free an invalid block by mocking a fake block u8 fakeBlockMem[DQN_KILOBYTE(3)] = {}; DqnMemStackBlock fakeBlock = {}; fakeBlock.memory = fakeBlockMem; fakeBlock.size = DQN_ARRAY_COUNT(fakeBlockMem); fakeBlock.used = 0; DQN_ASSERT(!DqnMemStack_FreeStackBlock(&stack, &fakeBlock)); //Ensure that the actual blocks are still valid and freeing did nothing DQN_ASSERT(firstBlock->size == firstBlockSize); DQN_ASSERT(secondBlock->size == secondBlockSize); DQN_ASSERT(thirdBlock->size == thirdBlockSize); DQN_ASSERT(fourthBlock->size == fourthBlockSize); DQN_ASSERT(firstBlock->used == firstBlockSize); DQN_ASSERT(secondBlock->used == secondBlockSize); DQN_ASSERT(thirdBlock->used == thirdBlockSize); DQN_ASSERT(fourthBlock->used == fourthBlockSize); DQN_ASSERT((firstBlock != secondBlock) && (secondBlock != thirdBlock) && (thirdBlock != fourthBlock)); DQN_ASSERT(firstBlock->prevBlock == NULL); DQN_ASSERT(secondBlock->prevBlock == firstBlock); DQN_ASSERT(thirdBlock->prevBlock == secondBlock); DQN_ASSERT(fourthBlock->prevBlock == thirdBlock); for (u32 i = 0; i < firstBlockSize; i++) DQN_ASSERT(first[i] == 'c'); for (u32 i = 0; i < secondBlockSize; i++) DQN_ASSERT(second[i] == 'd'); for (u32 i = 0; i < thirdBlockSize; i++) DQN_ASSERT(third[i] == 'e'); for (u32 i = 0; i < fourthBlockSize; i++) DQN_ASSERT(fourth[i] == 'f'); // Free the first block DqnMemStack_FreeStackBlock(&stack, firstBlock); // Revalidate state DQN_ASSERT(secondBlock->size == secondBlockSize); DQN_ASSERT(thirdBlock->size == thirdBlockSize); DQN_ASSERT(fourthBlock->size == fourthBlockSize); DQN_ASSERT(secondBlock->used == secondBlockSize); DQN_ASSERT(thirdBlock->used == thirdBlockSize); DQN_ASSERT(fourthBlock->used == fourthBlockSize); DQN_ASSERT((secondBlock != thirdBlock) && (thirdBlock != fourthBlock)); DQN_ASSERT(secondBlock->prevBlock == NULL); DQN_ASSERT(thirdBlock->prevBlock == secondBlock); DQN_ASSERT(fourthBlock->prevBlock == thirdBlock); for (u32 i = 0; i < secondBlockSize; i++) DQN_ASSERT(second[i] == 'd'); for (u32 i = 0; i < thirdBlockSize; i++) DQN_ASSERT(third[i] == 'e'); for (u32 i = 0; i < fourthBlockSize; i++) DQN_ASSERT(fourth[i] == 'f'); // Free the third block DqnMemStack_FreeStackBlock(&stack, thirdBlock); // Revalidate state DQN_ASSERT(secondBlock->size == secondBlockSize); DQN_ASSERT(fourthBlock->size == fourthBlockSize); DQN_ASSERT(secondBlock->used == secondBlockSize); DQN_ASSERT(fourthBlock->used == fourthBlockSize); DQN_ASSERT(secondBlock != fourthBlock); DQN_ASSERT(secondBlock->prevBlock == NULL); DQN_ASSERT(fourthBlock->prevBlock == secondBlock); for (u32 i = 0; i < secondBlockSize; i++) DQN_ASSERT(second[i] == 'd'); for (u32 i = 0; i < fourthBlockSize; i++) DQN_ASSERT(fourth[i] == 'f'); // Free the second block DqnMemStack_FreeStackBlock(&stack, secondBlock); // Revalidate state DQN_ASSERT(fourthBlock->size == fourthBlockSize); DQN_ASSERT(fourthBlock->used == fourthBlockSize); DQN_ASSERT(fourthBlock->prevBlock == NULL); for (u32 i = 0; i < fourthBlockSize; i++) DQN_ASSERT(fourth[i] == 'f'); // Free the stack DqnMemStack_Free(&stack); DQN_ASSERT(!stack.block); } // Test pop { DqnMemStack stack = {}; DqnMemStack_Init(&stack, DQN_KILOBYTE(1), true); size_t allocSize = 512; void *alloc = DqnMemStack_Push(&stack, allocSize); DQN_ASSERT(stack.block->used == allocSize); DQN_ASSERT(DqnMemStack_Pop(&stack, alloc, allocSize)); DQN_ASSERT(stack.block->used == 0); } } int main(void) { StringsTest(); RandomTest(); MathTest(); HandmadeMathTest(); VecTest(); OtherTest(); ArrayTest(); FileTest(); MemStackTest(); printf("\nPress 'Enter' Key to Exit\n"); getchar(); return 0; }