// ------------------------------------------------------------------------------------------------- // // NOTE: Preprocessor Config // // ------------------------------------------------------------------------------------------------- /* #define DQN_TEST_WITH_MAIN Define this to enable the main function and allow standalone compiling and running of the file. #define DQN_TEST_NO_ANSI_COLORS Define this to disable any ANSI terminal color codes from output */ #if defined(DQN_TEST_WITH_MAIN) #define DQN_IMPLEMENTATION #include "Dqn.h" #endif struct Dqn_TestState { int indent_level; Dqn_String name; Dqn_String fail_expr; Dqn_String fail_msg; bool scope_started; }; struct Dqn_TestingState { int num_tests_in_group; int num_tests_ok_in_group; Dqn_TestState test; Dqn_ArenaAllocator arena; }; #if defined(DQN_TEST_NO_ANSI_COLORS) #define DQN_TEST_ANSI_COLOR_RED #define DQN_TEST_ANSI_COLOR_GREEN #define DQN_TEST_ANSI_COLOR_YELLOW #define DQN_TEST_ANSI_COLOR_BLUE #define DQN_TEST_ANSI_COLOR_MAGENTA #define DQN_TEST_ANSI_COLOR_CYAN #define DQN_TEST_ANSI_COLOR_RESET #else #define DQN_TEST_ANSI_COLOR_RED "\x1b[31m" #define DQN_TEST_ANSI_COLOR_GREEN "\x1b[32m" #define DQN_TEST_ANSI_COLOR_YELLOW "\x1b[33m" #define DQN_TEST_ANSI_COLOR_BLUE "\x1b[34m" #define DQN_TEST_ANSI_COLOR_MAGENTA "\x1b[35m" #define DQN_TEST_ANSI_COLOR_CYAN "\x1b[36m" #define DQN_TEST_ANSI_COLOR_RESET "\x1b[0m" #endif #define DQN_TEST_START_SCOPE(testing_state, test_name) \ DQN_DEFER \ { \ if (testing_state.test.fail_expr.size == 0) testing_state.num_tests_ok_in_group++; \ Dqn_TestState_PrintResult(&testing_state.test); \ Dqn_ArenaAllocator_ResetUsage(&testing_state.arena, Dqn_ZeroMem::No); \ testing_state.test = {}; \ }; \ testing_state.test.name = DQN_STRING(test_name); \ testing_state.test.scope_started = true; \ testing_state.num_tests_in_group++ // NOTE: Zero initialised allocators can be a null allocator if #define // DQN_ALLOCATOR_DEFAULT_TO_NULL is defined, so handle this case specially // by defaulting to the heap allocator which is the behaviour it would have // used if the hash define was not used. // In the macro below we ensure that the allocator is not null, this idiom is // repeated whereever we zero initialise an allocator. #define DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, name) \ fprintf(stdout, name "\n"); \ if (testing_state.arena.backup_allocator.type == Dqn_AllocatorType::Null) \ testing_state.arena.backup_allocator = Dqn_Allocator_InitWithHeap(); \ DQN_DEFER \ { \ Dqn_TestingState_PrintGroupResult(&testing_state); \ testing_state = {}; \ fprintf(stdout, "\n\n"); \ } #define DQN_TEST_EXPECT_MSG(testing_state, expr, msg, ...) \ DQN_ASSERT(testing_state.test.scope_started); \ if (!(expr)) \ { \ testing_state.test.fail_expr = DQN_STRING(#expr); \ testing_state.test.fail_msg = Dqn_String_InitArenaFmt(&testing_state.arena, msg, ##__VA_ARGS__); \ } #define DQN_TEST_EXPECT(testing_state, expr) DQN_TEST_EXPECT_MSG(testing_state, expr, "") void Dqn_TestingState_PrintGroupResult(Dqn_TestingState const *result) { int const DESIRED_LEN = 72; char const STATUS_OK[] = "OK"; char const STATUS_FAIL[] = "FAIL"; bool all_tests_passed = (result->num_tests_ok_in_group == result->num_tests_in_group); char buf[256] = {}; int size = snprintf(buf, Dqn_ArrayCount(buf), "%02d/%02d Tests Passed ", result->num_tests_ok_in_group, result->num_tests_in_group); Dqn_isize remaining_size = DESIRED_LEN - size; remaining_size = (all_tests_passed) ? remaining_size - Dqn_CharCount(STATUS_OK) : remaining_size - Dqn_CharCount(STATUS_FAIL); remaining_size = DQN_M_MAX(remaining_size, 0); DQN_FOR_EACH(i, remaining_size) fprintf(stdout, " "); fprintf(stdout, "%s", buf); if (result->num_tests_ok_in_group == result->num_tests_in_group) fprintf(stdout, DQN_TEST_ANSI_COLOR_GREEN "%s" DQN_TEST_ANSI_COLOR_RESET, STATUS_OK); else fprintf(stdout, DQN_TEST_ANSI_COLOR_RED "%s" DQN_TEST_ANSI_COLOR_RESET, STATUS_FAIL); } void Dqn_TestState_PrintResult(Dqn_TestState const *result) { char const INDENT[] = " "; int const DESIRED_LEN = 72; fprintf(stdout, "%s%s", INDENT, result->name.str); char const STATUS_OK[] = "OK"; char const STATUS_FAIL[] = "FAIL"; Dqn_isize remaining_size = DESIRED_LEN - result->name.size - Dqn_CharCount(INDENT); remaining_size = (result->fail_expr.str) ? remaining_size - Dqn_CharCount(STATUS_FAIL) : remaining_size - Dqn_CharCount(STATUS_OK); remaining_size = DQN_M_MAX(remaining_size, 0); DQN_FOR_EACH(i, remaining_size) fprintf(stdout, "."); if (result->fail_expr.str) { fprintf(stdout, DQN_TEST_ANSI_COLOR_RED "%s" DQN_TEST_ANSI_COLOR_RESET "\n", STATUS_FAIL); fprintf(stdout, "%s%sReason: Expression failed (%s) %s\n", INDENT, INDENT, result->fail_expr.str, result->fail_msg.str); } else { fprintf(stdout, DQN_TEST_ANSI_COLOR_GREEN "%s" DQN_TEST_ANSI_COLOR_RESET "\n", STATUS_OK); } } void Dqn_Test_Allocator() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Allocator"); // NOTE: Various allocator test { { DQN_TEST_START_SCOPE(testing_state, "HeapAllocator - Allocate Small"); Dqn_Allocator allocator = Dqn_Allocator_InitWithHeap(); char const EXPECT[] = "hello_world"; char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char), Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT)); DQN_TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT); } { DQN_TEST_START_SCOPE(testing_state, "XHeapAllocator - Allocate Small"); Dqn_Allocator allocator = Dqn_Allocator_InitWithXHeap(); char const EXPECT[] = "hello_world"; char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char), Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT)); DQN_TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT); } { DQN_TEST_START_SCOPE(testing_state, "ArenaAllocator - Allocate Small"); Dqn_ArenaAllocator arena = Dqn_ArenaAllocator_InitWithNewAllocator(Dqn_Allocator_InitWithHeap(), 0, nullptr); Dqn_Allocator allocator = Dqn_Allocator_InitWithArena(&arena); char const EXPECT[] = "hello_world"; char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, Dqn_ArrayCount(EXPECT), alignof(char), Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; memcpy(buf, EXPECT, Dqn_ArrayCount(EXPECT)); DQN_TEST_EXPECT_MSG(testing_state, memcmp(EXPECT, buf, Dqn_ArrayCount(EXPECT)) == 0, "buf: %s, expect: %s", buf, EXPECT); } } // NOTE: Alignment Test { Dqn_u8 const ALIGNMENT3 = 4; Dqn_u8 const NUM_BYTES = sizeof(Dqn_u32); { DQN_TEST_START_SCOPE(testing_state, "HeapAllocator - Align to 32 bytes"); Dqn_Allocator allocator = Dqn_Allocator_InitWithHeap(); auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3, Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3); DQN_TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment); } { DQN_TEST_START_SCOPE(testing_state, "XHeapAllocator - Align to 32 bytes"); Dqn_Allocator allocator = Dqn_Allocator_InitWithXHeap(); auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3, Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3); DQN_TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment); } { DQN_TEST_START_SCOPE(testing_state, "ArenaAllocator - Align to 32 bytes"); Dqn_ArenaAllocator arena = {}; if (arena.backup_allocator.type == Dqn_AllocatorType::Null) arena.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_Allocator allocator = Dqn_Allocator_InitWithArena(&arena); auto *buf = DQN_CAST(Dqn_u32 *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3, Dqn_ZeroMem::Yes); int buf_mod_alignment = DQN_CAST(int)(DQN_CAST(uintptr_t)buf % ALIGNMENT3); DQN_TEST_EXPECT_MSG(testing_state, buf_mod_alignment == 0, "buf_mod_alignment: %d", buf_mod_alignment); } } // NOTE: Dqn_PointerMetadata tests { Dqn_u8 const ALIGNMENT3 = 4; Dqn_u8 const NUM_BYTES = 4; Dqn_u8 const MAX_OFFSET = (ALIGNMENT3 - 1) + sizeof(Dqn_PointerMetadata); { DQN_TEST_START_SCOPE(testing_state, "HeapAllocator - Allocation metadata initialised"); Dqn_Allocator allocator = Dqn_Allocator_InitWithHeap(); char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3, Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; Dqn_PointerMetadata metadata = Dqn_PointerMetadata_Get(buf); DQN_TEST_EXPECT_MSG(testing_state, metadata.alignment == ALIGNMENT3, "metadata.alignment: %u, ALIGNMENT3: %u", metadata.alignment, ALIGNMENT3); DQN_TEST_EXPECT_MSG(testing_state, metadata.offset <= MAX_OFFSET, "metadata.offset: %u, MAX_OFFSET: %u", metadata.offset, MAX_OFFSET); } { DQN_TEST_START_SCOPE(testing_state, "XHeapAllocator - Allocation metadata initialised"); Dqn_Allocator allocator = Dqn_Allocator_InitWithXHeap(); char *buf = DQN_CAST(char *)Dqn_Allocator_Allocate(&allocator, NUM_BYTES, ALIGNMENT3, Dqn_ZeroMem::Yes); DQN_DEFER { Dqn_Allocator_Free(&allocator, buf); }; Dqn_PointerMetadata metadata = Dqn_PointerMetadata_Get(buf); DQN_TEST_EXPECT_MSG(testing_state, metadata.alignment == ALIGNMENT3, "metadata.alignment: %u, ALIGNMENT3: %u", metadata.alignment, ALIGNMENT3); DQN_TEST_EXPECT_MSG(testing_state, metadata.offset <= MAX_OFFSET, "metadata.offset: %u, MAX_OFFSET: %u", metadata.offset, MAX_OFFSET); } } } void Dqn_Test_Array() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Array"); // NOTE: Dqn_Array_InitWithMemory { { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test add single item and can't allocate more"); int memory[4] = {}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); Dqn_Array_Add(&array, 1); Dqn_Array_Add(&array, 2); Dqn_Array_Add(&array, 3); Dqn_Array_Add(&array, 4); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data %d", array.data[1]); DQN_TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]); DQN_TEST_EXPECT_MSG(testing_state, array.data[3] == 4, "array.data %d", array.data[3]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 4, "array.size: %d", array.size); int *added_item = Dqn_Array_Add(&array, 5); DQN_TEST_EXPECT(testing_state, added_item == nullptr); DQN_TEST_EXPECT_MSG(testing_state, array.size == 4, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); } { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test add array of items"); int memory[4] = {}; int DATA[] = {1, 2, 3}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); Dqn_Array_AddArray(&array, DATA, Dqn_ArrayCount(DATA)); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data %d", array.data[1]); DQN_TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 3, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); } { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test clear and clear with memory zeroed"); int memory[4] = {}; int DATA[] = {1, 2, 3}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); Dqn_Array_AddArray(&array, DATA, Dqn_ArrayCount(DATA)); Dqn_Array_Clear(&array, Dqn_ZeroMem::No); DQN_TEST_EXPECT_MSG(testing_state, array.size == 0, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d. Clear but don't zero memory so old values should still remain", array.data[0]); Dqn_Array_Clear(&array, Dqn_ZeroMem::Yes); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 0, "array.data %d. Clear but zero memory old values should not remain", array.data[0]); } { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test erase stable and erase unstable"); int memory[4] = {}; int DATA[] = {1, 2, 3, 4}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); Dqn_Array_AddArray(&array, DATA, Dqn_ArrayCount(DATA)); Dqn_Array_EraseUnstable(&array, 1); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.data[1] == 4, "array.data %d", array.data[1]); DQN_TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data %d", array.data[2]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 3, "array.size: %d", array.size); Dqn_Array_EraseStable(&array, 0); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 4, "array.data: %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.data[1] == 3, "array.data: %d", array.data[1]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 2, "array.size: %d", array.size); } { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test array pop and peek"); int memory[4] = {}; int DATA[] = {1, 2, 3}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); Dqn_Array_AddArray(&array, DATA, Dqn_ArrayCount(DATA)); Dqn_Array_Pop(&array, 2); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data: %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 1, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); int *peek_item = Dqn_Array_Peek(&array); DQN_TEST_EXPECT_MSG(testing_state, *peek_item == 1, "peek: %d", *peek_item); DQN_TEST_EXPECT_MSG(testing_state, array.size == 1, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); } { DQN_TEST_START_SCOPE(testing_state, "Fixed Memory: Test free on fixed memory array does nothing"); int memory[4] = {}; Dqn_Array array = Dqn_Array_InitWithMemory(memory, Dqn_ArrayCount(memory), 0 /*size*/); DQN_DEFER { Dqn_Array_Free(&array); }; } } // NOTE: Dynamic Memory: Dqn_Array { { DQN_TEST_START_SCOPE(testing_state, "Dynamic Memory: Reserve and check over commit reallocates"); Dqn_Array array = {}; if (array.allocator.type == Dqn_AllocatorType::Null) array.allocator = Dqn_Allocator_InitWithHeap(); DQN_DEFER { Dqn_Array_Free(&array); }; Dqn_Array_Reserve(&array, 4); DQN_TEST_EXPECT_MSG(testing_state, array.size == 0, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max == 4, "array.max: %d", array.max); int DATA[] = {1, 2, 3, 4}; Dqn_Array_AddArray(&array, DATA, Dqn_ArrayCount(DATA)); DQN_TEST_EXPECT_MSG(testing_state, array.data[0] == 1, "array.data: %d", array.data[0]); DQN_TEST_EXPECT_MSG(testing_state, array.data[1] == 2, "array.data: %d", array.data[1]); DQN_TEST_EXPECT_MSG(testing_state, array.data[2] == 3, "array.data: %d", array.data[2]); DQN_TEST_EXPECT_MSG(testing_state, array.data[3] == 4, "array.data: %d", array.data[3]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 4, "array.size: %d", array.size); int *added_item = Dqn_Array_Add(&array, 5); DQN_TEST_EXPECT_MSG(testing_state, *added_item == 5, "added_item: %d", *added_item); DQN_TEST_EXPECT_MSG(testing_state, array.data[4] == 5, "array.data: %d", array.data[4]); DQN_TEST_EXPECT_MSG(testing_state, array.size == 5, "array.size: %d", array.size); DQN_TEST_EXPECT_MSG(testing_state, array.max >= 5, "array.max: %d", array.max); } } } void Dqn_Test_FixedArray() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_FixedArray"); // NOTE: Dqn_FixedArray_Init { DQN_TEST_START_SCOPE(testing_state, "Initialise from raw array"); int raw_array[] = {1, 2}; auto array = Dqn_FixedArray_Init(raw_array, (int)Dqn_ArrayCount(raw_array)); DQN_TEST_EXPECT(testing_state, array.size == 2); DQN_TEST_EXPECT(testing_state, array[0] == 1); DQN_TEST_EXPECT(testing_state, array[1] == 2); } // NOTE: Dqn_FixedArray_EraseStable { DQN_TEST_START_SCOPE(testing_state, "Erase stable 1 element from array"); int raw_array[] = {1, 2, 3}; auto array = Dqn_FixedArray_Init(raw_array, (int)Dqn_ArrayCount(raw_array)); Dqn_FixedArray_EraseStable(&array, 1); DQN_TEST_EXPECT(testing_state, array.size == 2); DQN_TEST_EXPECT(testing_state, array[0] == 1); DQN_TEST_EXPECT(testing_state, array[1] == 3); } // NOTE: Dqn_FixedArray_EraseUnstable { DQN_TEST_START_SCOPE(testing_state, "Erase unstable 1 element from array"); int raw_array[] = {1, 2, 3}; auto array = Dqn_FixedArray_Init(raw_array, (int)Dqn_ArrayCount(raw_array)); Dqn_FixedArray_EraseUnstable(&array, 0); DQN_TEST_EXPECT(testing_state, array.size == 2); DQN_TEST_EXPECT(testing_state, array[0] == 3); DQN_TEST_EXPECT(testing_state, array[1] == 2); } // NOTE: Dqn_FixedArray_Add { DQN_TEST_START_SCOPE(testing_state, "Add 1 element to array"); int const ITEM = 2; int raw_array[] = {1}; auto array = Dqn_FixedArray_Init(raw_array, (int)Dqn_ArrayCount(raw_array)); Dqn_FixedArray_Add(&array, ITEM); DQN_TEST_EXPECT(testing_state, array.size == 2); DQN_TEST_EXPECT(testing_state, array[0] == 1); DQN_TEST_EXPECT(testing_state, array[1] == ITEM); } // NOTE: Dqn_FixedArray_Clear { DQN_TEST_START_SCOPE(testing_state, "Clear array"); int raw_array[] = {1}; auto array = Dqn_FixedArray_Init(raw_array, (int)Dqn_ArrayCount(raw_array)); Dqn_FixedArray_Clear(&array); DQN_TEST_EXPECT(testing_state, array.size == 0); } } void Dqn_Test_FixedString() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_FixedString"); // NOTE: Dqn_FixedString_Append { DQN_TEST_START_SCOPE(testing_state, "Append too much fails"); Dqn_FixedString<4> str = {}; DQN_TEST_EXPECT_MSG(testing_state, Dqn_FixedString_Append(&str, "abcd") == false, "We need space for the null-terminator"); } // NOTE: Dqn_FixedString_AppendFmt { DQN_TEST_START_SCOPE(testing_state, "Append format string too much fails"); Dqn_FixedString<4> str = {}; DQN_TEST_EXPECT_MSG(testing_state, Dqn_FixedString_AppendFmt(&str, "abcd") == false, "We need space for the null-terminator"); } } void Dqn_Test_M4() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_M4"); { DQN_TEST_START_SCOPE(testing_state, "Simple translate and scale matrix"); Dqn_M4 translate = Dqn_M4_TranslateF(1, 2, 3); Dqn_M4 scale = Dqn_M4_ScaleF(2, 2, 2); Dqn_M4 result = Dqn_M4_Mul(translate, scale); const Dqn_M4 EXPECT = {{ {2, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {1, 2, 3, 1}, }}; DQN_TEST_EXPECT_MSG(testing_state, memcmp(result.columns, EXPECT.columns, sizeof(EXPECT)) == 0, "\nresult =\n%s\nexpected =\n%s", Dqn_M4_ColumnMajorString(result).str, Dqn_M4_ColumnMajorString(EXPECT).str); } } void Dqn_Test_Intrinsics() { // TODO(doyle): We don't have meaningful tests here, but since // atomics/intrinsics are implemented using macros we ensure the macro was // written properly with these tests. Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Atomic"); { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicAddU32"); Dqn_u32 val = 0; Dqn_AtomicAddU32(&val, 1); DQN_TEST_EXPECT_MSG(testing_state, val == 1, "val: %I64u", val); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicAddU64"); Dqn_u64 val = 0; Dqn_AtomicAddU64(&val, 1); DQN_TEST_EXPECT_MSG(testing_state, val == 1, "val: %I64u", val); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicSubU32"); Dqn_u32 val = 1; Dqn_AtomicSubU32(&val, 1); DQN_TEST_EXPECT_MSG(testing_state, val == 0, "val: %I64u", val); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicSubU64"); Dqn_u64 val = 1; Dqn_AtomicSubU64(&val, 1); DQN_TEST_EXPECT_MSG(testing_state, val == 0, "val: %I64u", val); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicSetValue32"); long a = 0; long b = 111; Dqn_AtomicSetValue32(&a, b); DQN_TEST_EXPECT_MSG(testing_state, a == b, "a: %I64d, b: %I64d", a, b); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_AtomicSetValue64"); Dqn_i64 a = 0; Dqn_i64 b = 111; Dqn_AtomicSetValue64(&a, b); DQN_TEST_EXPECT_MSG(testing_state, a == b, "a: %I64i, b: %I64i", a, b); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_CPUClockCycle"); Dqn_CPUClockCycle(); } { DQN_TEST_START_SCOPE(testing_state, "Dqn_CompilerReadBarrierAndCPUReadFence"); Dqn_CompilerReadBarrierAndCPUReadFence; } { DQN_TEST_START_SCOPE(testing_state, "Dqn_CompilerWriteBarrierAndCPUWriteFence"); Dqn_CompilerWriteBarrierAndCPUWriteFence; } } void Dqn_Test_Rect() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Rect"); // NOTE: Dqn_Rect_Intersection { { DQN_TEST_START_SCOPE(testing_state, "No intersection"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(0, 0), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(200, 0), Dqn_V2(200, 200)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 0 && ab.max.y == 0, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "A's min intersects B"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(50, 50), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 50 && ab.min.y == 50 && ab.max.x == 100 && ab.max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "B's min intersects A"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(50, 50), Dqn_V2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 50 && ab.min.y == 50 && ab.max.x == 100 && ab.max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "A's max intersects B"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(-50, -50), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 50 && ab.max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "B's max intersects A"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(-50, -50), Dqn_V2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 50 && ab.max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "B contains A"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(25, 25), Dqn_V2( 25, 25)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 25 && ab.min.y == 25 && ab.max.x == 50 && ab.max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "A contains B"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2( 0, 0), Dqn_V2(100, 100)); Dqn_Rect b = Dqn_Rect_InitFromPosAndSize(Dqn_V2(25, 25), Dqn_V2( 25, 25)); Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 25 && ab.min.y == 25 && ab.max.x == 50 && ab.max.y == 50, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } { DQN_TEST_START_SCOPE(testing_state, "A equals B"); Dqn_Rect a = Dqn_Rect_InitFromPosAndSize(Dqn_V2(0, 0), Dqn_V2(100, 100)); Dqn_Rect b = a; Dqn_Rect ab = Dqn_Rect_Intersection(a, b); DQN_TEST_EXPECT_MSG(testing_state, ab.min.x == 0 && ab.min.y == 0 && ab.max.x == 100 && ab.max.y == 100, "ab = { min.x = %.2f, min.y = %.2f, max.x = %.2f. max.y = %.2f }", ab.min.x, ab.min.y, ab.max.x, ab.max.y); } } } void Dqn_Test_Str() { Dqn_TestingState testing_state = {}; // --------------------------------------------------------------------------------------------- // NOTE: Dqn_Str_ToI64 // --------------------------------------------------------------------------------------------- { DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_ToI64"); { DQN_TEST_START_SCOPE(testing_state, "Convert nullptr"); Dqn_i64 result = Dqn_Str_ToI64(nullptr); DQN_TEST_EXPECT(testing_state, result == 0); } { DQN_TEST_START_SCOPE(testing_state, "Convert empty string"); Dqn_i64 result = Dqn_Str_ToI64(""); DQN_TEST_EXPECT(testing_state, result == 0); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1\""); Dqn_i64 result = Dqn_Str_ToI64("1"); DQN_TEST_EXPECT(testing_state, result == 1); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"-0\""); Dqn_i64 result = Dqn_Str_ToI64("-0"); DQN_TEST_EXPECT(testing_state, result == 0); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"-1\""); Dqn_i64 result = Dqn_Str_ToI64("-1"); DQN_TEST_EXPECT(testing_state, result == -1); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1.2\""); Dqn_i64 result = Dqn_Str_ToI64("1.2"); DQN_TEST_EXPECT(testing_state, result == 1); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1,234\""); Dqn_i64 result = Dqn_Str_ToI64("1,234"); DQN_TEST_EXPECT(testing_state, result == 1234); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1,2\""); Dqn_i64 result = Dqn_Str_ToI64("1,2"); DQN_TEST_EXPECT(testing_state, result == 12); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"12a3\""); Dqn_i64 result = Dqn_Str_ToI64("12a3"); DQN_TEST_EXPECT(testing_state, result == 12); } } // --------------------------------------------------------------------------------------------- // NOTE: Dqn_Str_ToU64 // --------------------------------------------------------------------------------------------- { DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_ToU64"); { DQN_TEST_START_SCOPE(testing_state, "Convert nullptr"); Dqn_u64 result = Dqn_Str_ToU64(nullptr); DQN_TEST_EXPECT_MSG(testing_state, result == 0, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert empty string"); Dqn_u64 result = Dqn_Str_ToU64(""); DQN_TEST_EXPECT_MSG(testing_state, result == 0, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1\""); Dqn_u64 result = Dqn_Str_ToU64("1"); DQN_TEST_EXPECT_MSG(testing_state, result == 1, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"-0\""); Dqn_u64 result = Dqn_Str_ToU64("-0"); DQN_TEST_EXPECT_MSG(testing_state, result == 0, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"-1\""); Dqn_u64 result = Dqn_Str_ToU64("-1"); DQN_TEST_EXPECT_MSG(testing_state, result == 0, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1.2\""); Dqn_u64 result = Dqn_Str_ToU64("1.2"); DQN_TEST_EXPECT_MSG(testing_state, result == 1, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1,234\""); Dqn_u64 result = Dqn_Str_ToU64("1,234"); DQN_TEST_EXPECT_MSG(testing_state, result == 1234, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"1,2\""); Dqn_u64 result = Dqn_Str_ToU64("1,2"); DQN_TEST_EXPECT_MSG(testing_state, result == 12, "result: %zu", result); } { DQN_TEST_START_SCOPE(testing_state, "Convert \"12a3\""); Dqn_u64 result = Dqn_Str_ToU64("12a3"); DQN_TEST_EXPECT_MSG(testing_state, result == 12, "result: %zu", result); } } // --------------------------------------------------------------------------------------------- // NOTE: Dqn_Str_Find // --------------------------------------------------------------------------------------------- { DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_Str_Find"); { DQN_TEST_START_SCOPE(testing_state, "String (char) is not in buffer"); char const buf[] = "836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55"; char const find[] = "2"; char const *result = Dqn_Str_Find(buf, find, Dqn_CharCountI(buf), Dqn_CharCountI(find)); DQN_TEST_EXPECT(testing_state, result == nullptr); } { DQN_TEST_START_SCOPE(testing_state, "String (char) is in buffer"); char const buf[] = "836a35becd4e74b66a0d6844d51f1a63018c7ebc44cf7e109e8e4bba57eefb55"; char const find[] = "6"; char const *result = Dqn_Str_Find(buf, find, Dqn_CharCountI(buf), Dqn_CharCountI(find)); DQN_TEST_EXPECT(testing_state, result != nullptr); DQN_TEST_EXPECT(testing_state, result[0] == '6' && result[1] == 'a'); } } } void Dqn_Test_StringBuilder() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_StringBuilder"); Dqn_Allocator allocator = Dqn_Allocator_InitWithHeap(); // NOTE: Dqn_StringBuilder_Append { { DQN_TEST_START_SCOPE(testing_state, "Append variable size strings and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_Append(&builder, "Abc", 1); Dqn_StringBuilder_Append(&builder, "cd"); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = "Acd"; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } { DQN_TEST_START_SCOPE(testing_state, "Append empty string and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_Append(&builder, ""); Dqn_StringBuilder_Append(&builder, ""); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = ""; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } { DQN_TEST_START_SCOPE(testing_state, "Append empty string onto string and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_Append(&builder, "Acd"); Dqn_StringBuilder_Append(&builder, ""); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = "Acd"; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } { DQN_TEST_START_SCOPE(testing_state, "Append nullptr and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_Append(&builder, nullptr, 5); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = ""; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } { DQN_TEST_START_SCOPE(testing_state, "Append and require new linked buffer and build using heap allocator"); Dqn_StringBuilder<2> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_Append(&builder, "A"); Dqn_StringBuilder_Append(&builder, "z"); // Should force a new memory block Dqn_StringBuilder_Append(&builder, "tec"); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = "Aztec"; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } } // NOTE: Dqn_StringBuilder_AppendChar { DQN_TEST_START_SCOPE(testing_state, "Append char and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_AppendChar(&builder, 'a'); Dqn_StringBuilder_AppendChar(&builder, 'b'); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = "ab"; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } // NOTE: Dqn_StringBuilder_AppendFmt { { DQN_TEST_START_SCOPE(testing_state, "Append format string and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_AppendFmt(&builder, "Number: %d, String: %s, ", 4, "Hello Sailor"); Dqn_StringBuilder_AppendFmt(&builder, "Extra Stuff"); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = "Number: 4, String: Hello Sailor, Extra Stuff"; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } { DQN_TEST_START_SCOPE(testing_state, "Append nullptr format string and build using heap allocator"); Dqn_StringBuilder<> builder = {}; if (builder.backup_allocator.type == Dqn_AllocatorType::Null) builder.backup_allocator = Dqn_Allocator_InitWithHeap(); Dqn_StringBuilder_AppendFmt(&builder, nullptr); Dqn_isize size = 0; char *result = Dqn_StringBuilder_Build(&builder, &allocator, &size); DQN_DEFER { Dqn_Allocator_Free(&allocator, result); }; char const EXPECT_STR[] = ""; DQN_TEST_EXPECT_MSG(testing_state, size == Dqn_CharCountI(EXPECT_STR), "size: %zd", size); DQN_TEST_EXPECT_MSG(testing_state, strncmp(result, EXPECT_STR, size) == 0, "result: %s", result); } } } void Dqn_Test_TicketMutex() { Dqn_TestingState testing_state = {}; DQN_TEST_DECLARE_GROUP_SCOPED(testing_state, "Dqn_TicketMutex"); { // TODO: We don't have a meaningful test but since atomics are // implemented with a macro this ensures that we test that they are // written correctly. DQN_TEST_START_SCOPE(testing_state, "Ticket mutex start and stop"); Dqn_TicketMutex mutex = {}; Dqn_TicketMutex_Begin(&mutex); Dqn_TicketMutex_End(&mutex); DQN_TEST_EXPECT(testing_state, mutex.ticket == mutex.serving); } { DQN_TEST_START_SCOPE(testing_state, "Ticket mutex start and stop w/ advanced API"); Dqn_TicketMutex mutex = {}; unsigned int ticket_a = Dqn_TicketMutex_MakeTicket(&mutex); unsigned int ticket_b = Dqn_TicketMutex_MakeTicket(&mutex); DQN_TEST_EXPECT(testing_state, DQN_CAST(bool)Dqn_TicketMutex_CanLock(&mutex, ticket_b) == false); DQN_TEST_EXPECT(testing_state, DQN_CAST(bool)Dqn_TicketMutex_CanLock(&mutex, ticket_a) == true); Dqn_TicketMutex_BeginTicket(&mutex, ticket_a); Dqn_TicketMutex_End(&mutex); Dqn_TicketMutex_BeginTicket(&mutex, ticket_b); Dqn_TicketMutex_End(&mutex); DQN_TEST_EXPECT(testing_state, mutex.ticket == mutex.serving); DQN_TEST_EXPECT(testing_state, mutex.ticket == ticket_b + 1); } } void Dqn_Test_RunSuite() { Dqn_Test_Allocator(); Dqn_Test_Array(); Dqn_Test_FixedArray(); Dqn_Test_FixedString(); Dqn_Test_Intrinsics(); Dqn_Test_M4(); Dqn_Test_Rect(); Dqn_Test_Str(); Dqn_Test_StringBuilder(); Dqn_Test_TicketMutex(); } #if defined(DQN_TEST_WITH_MAIN) int main(int argc, char *argv[]) { (void)argv; (void)argc; Dqn_Test_RunSuite(); return 0; } #endif