150 lines
6.4 KiB
C++
150 lines
6.4 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
/// OpenGL Mathematics (glm.g-truc.net)
|
|
///
|
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
/// of this software and associated documentation files (the "Software"), to deal
|
|
/// in the Software without restriction, including without limitation the rights
|
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
/// copies of the Software, and to permit persons to whom the Software is
|
|
/// furnished to do so, subject to the following conditions:
|
|
///
|
|
/// The above copyright notice and this permission notice shall be included in
|
|
/// all copies or substantial portions of the Software.
|
|
///
|
|
/// Restrictions:
|
|
/// By making use of the Software for military purposes, you choose to make
|
|
/// a Bunny unhappy.
|
|
///
|
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
/// THE SOFTWARE.
|
|
///
|
|
/// @ref gtc_matrix_inverse
|
|
/// @file glm/gtc/matrix_inverse.inl
|
|
/// @date 2005-12-21 / 2011-06-15
|
|
/// @author Christophe Riccio
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace glm
|
|
{
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m)
|
|
{
|
|
tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m)));
|
|
|
|
return tmat3x3<T, P>(
|
|
tvec3<T, P>(Inv[0], static_cast<T>(0)),
|
|
tvec3<T, P>(Inv[1], static_cast<T>(0)),
|
|
tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1)));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m)
|
|
{
|
|
tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m)));
|
|
|
|
return tmat4x4<T, P>(
|
|
tvec4<T, P>(Inv[0], static_cast<T>(0)),
|
|
tvec4<T, P>(Inv[1], static_cast<T>(0)),
|
|
tvec4<T, P>(Inv[2], static_cast<T>(0)),
|
|
tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1)));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m)
|
|
{
|
|
T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
|
|
|
|
tmat2x2<T, P> Inverse(
|
|
+ m[1][1] / Determinant,
|
|
- m[0][1] / Determinant,
|
|
- m[1][0] / Determinant,
|
|
+ m[0][0] / Determinant);
|
|
|
|
return Inverse;
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m)
|
|
{
|
|
T Determinant =
|
|
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
|
|
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
|
|
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
|
|
|
|
tmat3x3<T, P> Inverse(uninitialize);
|
|
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
|
|
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
|
|
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
|
|
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
|
|
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
|
|
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
|
|
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
|
|
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
|
|
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
|
|
Inverse /= Determinant;
|
|
|
|
return Inverse;
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m)
|
|
{
|
|
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
|
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
|
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
|
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
|
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
|
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
|
T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
|
T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
|
T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
|
T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
|
T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
|
T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
|
T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
|
T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
|
T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
|
T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
|
T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
|
|
|
tmat4x4<T, P> Inverse(uninitialize);
|
|
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
|
|
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
|
|
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
|
|
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
|
|
|
|
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
|
|
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
|
|
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
|
|
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
|
|
|
|
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
|
|
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
|
|
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
|
|
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
|
|
|
|
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
|
|
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
|
|
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
|
|
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
|
|
|
|
T Determinant =
|
|
+ m[0][0] * Inverse[0][0]
|
|
+ m[0][1] * Inverse[0][1]
|
|
+ m[0][2] * Inverse[0][2]
|
|
+ m[0][3] * Inverse[0][3];
|
|
|
|
Inverse /= Determinant;
|
|
|
|
return Inverse;
|
|
}
|
|
}//namespace glm
|