#include "Dengine/Asteroid.h" #include "Dengine/Debug.h" void initAssetManager(GameState *state) { AssetManager *assetManager = &state->assetManager; MemoryArena_ *arena = &state->persistentArena; i32 texAtlasEntries = 8; assetManager->texAtlas.size = texAtlasEntries; assetManager->texAtlas.entries = memory_pushBytes(arena, texAtlasEntries * sizeof(HashTableEntry)); i32 animEntries = 1024; assetManager->anims.size = animEntries; assetManager->anims.entries = memory_pushBytes(arena, animEntries * sizeof(HashTableEntry)); { // Init texture assets i32 texEntries = 32; assetManager->textures.size = texEntries; assetManager->textures.entries = memory_pushBytes(arena, texEntries * sizeof(HashTableEntry)); /* Create empty 1x1 4bpp black texture */ u32 bitmap = (0xFF << 24) | (0xFF << 16) | (0xFF << 8) | (0xFF << 0); Texture *tex = asset_getFreeTexSlot(assetManager, arena, "nullTex"); *tex = texture_gen(1, 1, 4, CAST(u8 *)(&bitmap)); i32 result = asset_loadTTFont(assetManager, arena, "C:/Windows/Fonts/Arialbd.ttf"); } { // Init shaders assets asset_loadShaderFiles( assetManager, arena, "data/shaders/default_tex.vert.glsl", "data/shaders/default_tex.frag.glsl", shaderlist_default); asset_loadShaderFiles( assetManager, arena, "data/shaders/default_no_tex.vert.glsl", "data/shaders/default_no_tex.frag.glsl", shaderlist_default_no_tex); } { // Init audio assets i32 audioEntries = 32; assetManager->audio.size = audioEntries; assetManager->audio.entries = memory_pushBytes(arena, audioEntries * sizeof(HashTableEntry)); i32 result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/bang_large.ogg", "bang_large"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/bang_medium.ogg", "bang_medium"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/bang_small.ogg", "bang_small"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/beat1.ogg", "beat1"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/beat2.ogg", "beat2"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/extra_ship.ogg", "extra_ship"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/fire.ogg", "fire"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/saucer_big.ogg", "saucer_big"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/saucer_small.ogg", "saucer_small"); ASSERT(!result); result = asset_loadVorbis(assetManager, arena, "data/audio/Asteroids/thrust.ogg", "thrust"); ASSERT(!result); } } void initRenderer(GameState *state, v2 windowSize) { AssetManager *assetManager = &state->assetManager; Renderer *renderer = &state->renderer; renderer->size = windowSize; // NOTE(doyle): Value to map a screen coordinate to NDC coordinate renderer->vertexNdcFactor = V2(1.0f / renderer->size.w, 1.0f / renderer->size.h); renderer->groupIndexForVertexBatch = -1; const mat4 projection = mat4_ortho(0.0f, renderer->size.w, 0.0f, renderer->size.h, 0.0f, 1.0f); for (i32 i = 0; i < shaderlist_count; i++) { renderer->shaderList[i] = asset_getShader(assetManager, i); shader_use(renderer->shaderList[i]); shader_uniformSetMat4fv(renderer->shaderList[i], "projection", projection); GL_CHECK_ERROR(); } renderer->activeShaderId = renderer->shaderList[shaderlist_default]; GL_CHECK_ERROR(); /* Create buffers */ glGenVertexArrays(ARRAY_COUNT(renderer->vao), renderer->vao); glGenBuffers(ARRAY_COUNT(renderer->vbo), renderer->vbo); GL_CHECK_ERROR(); // Bind buffers and configure vao, vao automatically intercepts // glBindCalls and associates the state with that buffer for us for (enum RenderMode mode = 0; mode < rendermode_count; mode++) { glBindVertexArray(renderer->vao[mode]); glBindBuffer(GL_ARRAY_BUFFER, renderer->vbo[mode]); glEnableVertexAttribArray(0); u32 numVertexElements = 4; u32 stride = sizeof(RenderVertex); glVertexAttribPointer(0, numVertexElements, GL_FLOAT, GL_FALSE, stride, (GLvoid *)0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); } /* Unbind */ GL_CHECK_ERROR(); // TODO(doyle): Lazy allocate render group capacity renderer->groupCapacity = 4096; for (i32 i = 0; i < ARRAY_COUNT(renderer->groups); i++) { renderer->groups[i].vertexList = memory_pushBytes(&state->persistentArena, renderer->groupCapacity * sizeof(RenderVertex)); } } #include #include v2 *createAsteroidVertexList(MemoryArena_ *arena, i32 iterations, i32 asteroidRadius) { f32 iterationAngle = 360.0f / iterations; iterationAngle = DEGREES_TO_RADIANS(iterationAngle); v2 *result = memory_pushBytes(arena, iterations * sizeof(v2)); for (i32 i = 0; i < iterations; i++) { i32 randValue = rand(); // NOTE(doyle): Sin/cos generate values from +-1, we want to create // vertices that start from 0, 0 (i.e. strictly positive) result[i] = V2(((math_cosf(iterationAngle * i) + 1) * asteroidRadius), ((math_sinf(iterationAngle * i) + 1) * asteroidRadius)); ASSERT(result[i].x >= 0 && result[i].y >= 0); #if 1 f32 displacementDist = 0.50f * asteroidRadius; i32 vertexDisplacement = randValue % (i32)displacementDist + (i32)(displacementDist * 0.25f); i32 quadrantSize = iterations / 4; i32 firstQuadrant = quadrantSize; i32 secondQuadrant = quadrantSize * 2; i32 thirdQuadrant = quadrantSize * 3; i32 fourthQuadrant = quadrantSize * 4; if (i < firstQuadrant) { result[i].x += vertexDisplacement; result[i].y += vertexDisplacement; } else if (i < secondQuadrant) { result[i].x -= vertexDisplacement; result[i].y += vertexDisplacement; } else if (i < thirdQuadrant) { result[i].x -= vertexDisplacement; result[i].y -= vertexDisplacement; } else { result[i].x += vertexDisplacement; result[i].y -= vertexDisplacement; } #endif } return result; } v2 *createNormalEdgeList(MemoryArena_ *transientArena, v2 *vertexList, i32 vertexListSize) { v2 *result = memory_pushBytes(transientArena, sizeof(v2) * vertexListSize); for (i32 i = 0; i < vertexListSize - 1; i++) { ASSERT((i + 1) < vertexListSize); result[i] = v2_sub(vertexList[i + 1], vertexList[i]); result[i] = v2_perpendicular(result[i]); } // NOTE(doyle): Creating the last edge requires using the first // vertex point which is at index 0 result[vertexListSize - 1] = v2_sub(vertexList[0], vertexList[vertexListSize - 1]); result[vertexListSize - 1] = v2_perpendicular(result[vertexListSize - 1]); return result; } v2 calculateProjectionRangeForEdge(v2 *vertexList, i32 vertexListSize, v2 edgeNormal) { v2 result = {0}; result.min = v2_dot(vertexList[0], edgeNormal); result.max = result.min; for (i32 vertexIndex = 0; vertexIndex < vertexListSize; vertexIndex++) { f32 dist = v2_dot(vertexList[vertexIndex], edgeNormal); if (dist < result.min) result.min = dist; else if (dist > result.max) result.max = dist; } return result; } b32 checkEdgeProjectionOverlap(v2 *vertexList, i32 listSize, v2 *checkVertexList, i32 checkListSize, v2 *edgeList, i32 totalNumEdges) { b32 result = TRUE; for (i32 edgeIndex = 0; edgeIndex < totalNumEdges && result; edgeIndex++) { v2 projectionRange = calculateProjectionRangeForEdge( vertexList, listSize, edgeList[edgeIndex]); v2 checkProjectionRange = calculateProjectionRangeForEdge( checkVertexList, checkListSize, edgeList[edgeIndex]); if (!v2_intervalsOverlap(projectionRange, checkProjectionRange)) { result = FALSE; return result; } } return result; } INTERNAL u32 moveEntity(World *world, MemoryArena_ *transientArena, Entity *entity, i32 entityIndex, v2 ddP, f32 dt, f32 ddPSpeed) { ASSERT(ABS(ddP.x) <= 1.0f && ABS(ddP.y) <= 1.0f); /* Assuming acceleration A over t time, then integrate twice to get newVelocity = a*t + oldVelocity newPos = (a*t^2)/2 + oldVelocity*t + oldPos */ if (ddP.x > 0.0f && ddP.y > 0.0f) { // NOTE(doyle): Cheese it and pre-compute the vector for // diagonal using pythagoras theorem on a unit triangle 1^2 // + 1^2 = c^2 ddP = v2_scale(ddP, 0.70710678118f); } ddP = v2_scale(ddP, world->pixelsPerMeter * ddPSpeed); v2 oldDp = entity->dP; v2 resistance = v2_scale(oldDp, 2.0f); ddP = v2_sub(ddP, resistance); v2 newDp = v2_add(v2_scale(ddP, dt), oldDp); v2 ddPHalf = v2_scale(ddP, 0.5f); v2 ddPHalfDtSquared = v2_scale(ddPHalf, (SQUARED(dt))); v2 oldDpDt = v2_scale(oldDp, dt); v2 oldPos = entity->pos; v2 newPos = v2_add(v2_add(ddPHalfDtSquared, oldDpDt), oldPos); i32 collisionIndex = -1; // TODO(doyle): Collision for rects, (need to create vertex list for it) for (i32 i = 1; i < world->entityIndex; i++) { if (i == entityIndex) continue; Entity *checkEntity = &world->entityList[i]; ASSERT(checkEntity->id != entity->id); if (world->collisionTable[entity->type][checkEntity->type]) { ASSERT(entity->vertexPoints); ASSERT(checkEntity->vertexPoints); /* Create entity edge lists */ v2 *entityVertexListOffsetToP = entity_generateUpdatedVertexList( transientArena, entity); v2 *checkEntityVertexListOffsetToP = entity_generateUpdatedVertexList(transientArena, checkEntity); v2 *entityEdgeList = createNormalEdgeList(transientArena, entityVertexListOffsetToP, entity->numVertexPoints); v2 *checkEntityEdgeList = createNormalEdgeList( transientArena, checkEntityVertexListOffsetToP, checkEntity->numVertexPoints); /* Combine both edge lists into one */ i32 totalNumEdges = checkEntity->numVertexPoints + entity->numVertexPoints; v2 *edgeList = memory_pushBytes(transientArena, totalNumEdges * sizeof(v2)); for (i32 i = 0; i < entity->numVertexPoints; i++) { edgeList[i] = entityEdgeList[i]; } for (i32 i = 0; i < checkEntity->numVertexPoints; i++) { edgeList[i + entity->numVertexPoints] = checkEntityEdgeList[i]; } if (checkEdgeProjectionOverlap( entityVertexListOffsetToP, entity->numVertexPoints, checkEntityVertexListOffsetToP, checkEntity->numVertexPoints, edgeList, totalNumEdges)) { collisionIndex = i; } } if (collisionIndex != -1) break; } entity->dP = newDp; entity->pos = newPos; return collisionIndex; } enum AsteroidSize { asteroidsize_small, asteroidsize_medium, asteroidsize_large, asteroidsize_count, }; typedef struct { v2 pos; v2 dP; } AsteroidSpec; INTERNAL void addAsteroidWithSpec(World *world, enum AsteroidSize asteroidSize, AsteroidSpec *spec) { world->asteroidCounter++; enum EntityType type; v2 size; v2 **vertexCache = NULL; if (asteroidSize == asteroidsize_small) { size = V2i(25, 25); type = entitytype_asteroid_small; vertexCache = world->asteroidSmallVertexCache; } else if (asteroidSize == asteroidsize_medium) { size = V2i(50, 50); type = entitytype_asteroid_medium; vertexCache = world->asteroidMediumVertexCache; } else if (asteroidSize == asteroidsize_large) { type = entitytype_asteroid_large; size = V2i(100, 100); vertexCache = world->asteroidLargeVertexCache; } else { ASSERT(INVALID_CODE_PATH); } Entity *asteroid = &world->entityList[world->entityIndex++]; asteroid->id = world->entityIdCounter++; i32 randValue = rand(); if (!spec) { i32 randX = (randValue % (i32)world->worldSize.w); i32 randY = (randValue % (i32)world->worldSize.h); v2 midpoint = v2_scale(world->worldSize, 0.5f); Rect topLeftQuadrant = {V2(0, midpoint.y), V2(midpoint.x, world->worldSize.y)}; Rect botLeftQuadrant = {V2(0, 0), midpoint}; Rect topRightQuadrant = {midpoint, world->worldSize}; Rect botRightQuadrant = {V2(midpoint.x, 0), V2(world->worldSize.x, midpoint.y)}; // NOTE(doyle): Off-screen so asteroids "float" into view. There's no // particular order, just pushing things offscreen when they get // generated // to float back into game space v2 newP = V2i(randX, randY); if (math_pointInRect(topLeftQuadrant, newP)) { newP.y += midpoint.y; } else if (math_pointInRect(botLeftQuadrant, newP)) { newP.x -= midpoint.x; } else if (math_pointInRect(topRightQuadrant, newP)) { newP.y -= midpoint.y; } else if (math_pointInRect(botRightQuadrant, newP)) { newP.x += midpoint.x; } else { ASSERT(INVALID_CODE_PATH); } asteroid->pos = newP; } else { asteroid->pos = spec->pos; asteroid->dP = spec->dP; } asteroid->size = size; asteroid->hitbox = asteroid->size; asteroid->offset = v2_scale(asteroid->size, -0.5f); asteroid->type = type; asteroid->renderMode = rendermode_polygon; asteroid->numVertexPoints = 10; i32 cacheIndex = randValue % ARRAY_COUNT(world->asteroidSmallVertexCache); ASSERT(ARRAY_COUNT(world->asteroidSmallVertexCache) == ARRAY_COUNT(world->asteroidMediumVertexCache)); ASSERT(ARRAY_COUNT(world->asteroidSmallVertexCache) == ARRAY_COUNT(world->asteroidLargeVertexCache)); if (!vertexCache[cacheIndex]) { vertexCache[cacheIndex] = createAsteroidVertexList( &world->entityArena, asteroid->numVertexPoints, (i32)(asteroid->size.w * 0.5f)); } asteroid->vertexPoints = vertexCache[cacheIndex]; asteroid->color = V4(0.0f, 0.5f, 0.5f, 1.0f); } INTERNAL void addAsteroid(World *world, enum AsteroidSize asteroidSize) { addAsteroidWithSpec(world, asteroidSize, NULL); } INTERNAL void addBullet(World *world, Entity *shooter) { Entity *bullet = &world->entityList[world->entityIndex++]; bullet->id = world->entityIdCounter++; bullet->pos = shooter->pos; bullet->size = V2(2.0f, 20.0f); bullet->offset = v2_scale(bullet->size, -0.5f); bullet->hitbox = bullet->size; bullet->rotation = shooter->rotation; bullet->renderMode = rendermode_polygon; if (!world->bulletVertexCache) { world->bulletVertexCache = MEMORY_PUSH_ARRAY(&world->entityArena, 4, v2); world->bulletVertexCache[0] = V2(0, bullet->size.h); world->bulletVertexCache[1] = V2(0, 0); world->bulletVertexCache[2] = V2(bullet->size.w, 0); world->bulletVertexCache[3] = bullet->size; } bullet->vertexPoints = world->bulletVertexCache; bullet->numVertexPoints = 4; bullet->type = entitytype_bullet; bullet->color = V4(1.0f, 1.0f, 0, 1.0f); } INTERNAL void setCollisionRule(World *world, enum EntityType a, enum EntityType b, b32 rule) { ASSERT(a <= entitytype_count); ASSERT(b <= entitytype_count); world->collisionTable[a][b] = rule; world->collisionTable[b][a] = rule; } INTERNAL AudioRenderer *getFreeAudioRenderer(World *world) { for (i32 i = 0; i < world->numAudioRenderers; i++) { AudioRenderer *renderer = &world->audioRenderer[i]; if (renderer->state == audiostate_stopped) { return renderer; } } return NULL; } INTERNAL void deleteEntity(World *world, i32 entityIndex) { ASSERT(entityIndex > 0); ASSERT(entityIndex < ARRAY_COUNT(world->entityList)); /* Last entity replaces the entity to delete */ world->entityList[entityIndex] = world->entityList[world->entityIndex - 1]; /* Make sure the replaced entity from end of list is cleared out */ Entity emptyEntity = {0}; world->entityList[--world->entityIndex] = emptyEntity; } void asteroid_gameUpdateAndRender(GameState *state, Memory *memory, v2 windowSize, f32 dt) { MemoryIndex globalTransientArenaSize = (MemoryIndex)((f32)memory->transientSize * 0.5f); memory_arenaInit(&state->transientArena, memory->transient, globalTransientArenaSize); World *world = &state->world; if (!state->init) { srand((u32)time(NULL)); initAssetManager(state); initRenderer(state, windowSize); audio_init(&state->audioManager); world->pixelsPerMeter = 70.0f; MemoryIndex entityArenaSize = (MemoryIndex)((f32)memory->transientSize * 0.5f); u8 *arenaBase = state->transientArena.base + state->transientArena.size; memory_arenaInit(&world->entityArena, arenaBase, entityArenaSize); { // Init null entity Entity *nullEntity = &world->entityList[world->entityIndex++]; nullEntity->id = world->entityIdCounter++; } { // Init asteroid entities world->numAsteroids = 15; } { // Init audio renderer world->numAudioRenderers = 6; world->audioRenderer = MEMORY_PUSH_ARRAY( &world->entityArena, world->numAudioRenderers, AudioRenderer); } { // Init ship entity Entity *ship = &world->entityList[world->entityIndex++]; ship->id = world->entityIdCounter++; ship->pos = V2(100, 100); ship->size = V2(25.0f, 50.0f); ship->hitbox = ship->size; ship->offset = v2_scale(ship->size, -0.5f); ship->numVertexPoints = 3; ship->vertexPoints = memory_pushBytes( &world->entityArena, sizeof(v2) * ship->numVertexPoints); v2 triangleBaseP = V2(0, 0); v2 triangleTopP = V2(ship->size.w * 0.5f, ship->size.h); v2 triangleRightP = V2(ship->size.w, triangleBaseP.y); ship->vertexPoints[0] = triangleBaseP; ship->vertexPoints[1] = triangleRightP; ship->vertexPoints[2] = triangleTopP; ship->scale = 1; ship->type = entitytype_ship; ship->renderMode = rendermode_polygon; ship->color = V4(1.0f, 0.5f, 0.5f, 1.0f); } { // Global Collision Rules setCollisionRule(world, entitytype_ship, entitytype_asteroid_small, TRUE); setCollisionRule(world, entitytype_ship, entitytype_asteroid_medium, TRUE); setCollisionRule(world, entitytype_ship, entitytype_asteroid_large, TRUE); setCollisionRule(world, entitytype_bullet, entitytype_asteroid_small, TRUE); setCollisionRule(world, entitytype_bullet, entitytype_asteroid_medium, TRUE); setCollisionRule(world, entitytype_bullet, entitytype_asteroid_large, TRUE); } world->camera.min = V2(0, 0); world->camera.max = state->renderer.size; world->worldSize = windowSize; state->init = TRUE; debug_init(&state->persistentArena, windowSize, state->assetManager.font); } for (u32 i = world->asteroidCounter; i < world->numAsteroids; i++) addAsteroid(world, (rand() % asteroidsize_count)); platform_processInputBuffer(&state->input, dt); if (platform_queryKey(&state->input.keys[keycode_left_square_bracket], readkeytype_repeat, 0.2f)) { addAsteroid(world, (rand() % asteroidsize_count)); } ASSERT(world->entityList[0].id == NULL_ENTITY_ID); for (i32 i = 1; i < world->entityIndex; i++) { Entity *entity = &world->entityList[i]; ASSERT(entity->type != entitytype_invalid); v2 pivotPoint = {0}; f32 ddPSpeedInMs = 0; v2 ddP = {0}; if (entity->type == entitytype_ship) { if (platform_queryKey(&state->input.keys[keycode_up], readkeytype_repeat, 0.0f)) { // TODO(doyle): Renderer creates upfacing triangles by default, // but we need to offset rotation so that our base "0 degrees" // is right facing for trig to work Radians rotation = DEGREES_TO_RADIANS((entity->rotation + 90.0f)); v2 direction = V2(math_cosf(rotation), math_sinf(rotation)); ddP = direction; } if (platform_queryKey(&state->input.keys[keycode_space], readkeytype_one_shot, KEY_DELAY_NONE)) { addBullet(world, entity); AudioRenderer *audioRenderer = getFreeAudioRenderer(world); if (audioRenderer) { AudioVorbis *fire = asset_getVorbis(&state->assetManager, "fire"); // TODO(doyle): Atm transient arena is not used, this is // just to fill out the arguments audio_playVorbis(&state->transientArena, &state->audioManager, audioRenderer, fire, 1); } } Degrees rotationsPerSecond = 180.0f; if (platform_queryKey(&state->input.keys[keycode_left], readkeytype_repeat, 0.0f)) { entity->rotation += (rotationsPerSecond)*dt; } if (platform_queryKey(&state->input.keys[keycode_right], readkeytype_repeat, 0.0f)) { entity->rotation -= (rotationsPerSecond)*dt; } entity->rotation = (f32)((i32)entity->rotation); ddPSpeedInMs = 25; DEBUG_PUSH_VAR("Pos: %5.2f, %5.2f", entity->pos, "v2"); DEBUG_PUSH_VAR("Velocity: %5.2f, %5.2f", entity->dP, "v2"); DEBUG_PUSH_VAR("Rotation: %5.2f", entity->rotation, "f32"); renderer_rect(&state->renderer, world->camera, entity->pos, V2(5, 5), V2(0, 0), DEGREES_TO_RADIANS(entity->rotation), NULL, V4(1.0f, 1.0f, 1.0f, 1.0f), renderflag_no_texture); } else if (entity->type >= entitytype_asteroid_small && entity->type <= entitytype_asteroid_large) { i32 randValue = rand(); // NOTE(doyle): If it is a new asteroid with no dp set, we need to // set a initial dp for it to move from. v2 localDp = {0}; if ((i32)entity->dP.x == 0 && (i32)entity->dP.y == 0) { enum Direction direction = randValue % direction_count; switch (direction) { case direction_north: case direction_northwest: { localDp.x = 1.0f; localDp.y = 1.0f; } break; case direction_west: case direction_southwest: { localDp.x = -1.0f; localDp.y = -1.0f; } break; case direction_south: case direction_southeast: { localDp.x = 1.0f; localDp.y = -1.0f; } break; case direction_east: case direction_northeast: { localDp.x = 1.0f; localDp.y = 1.0f; } break; default: { ASSERT(INVALID_CODE_PATH); } break; } } // NOTE(doyle): Otherwise, if it has pre-existing dp, maintain our // direction by extrapolating from it's current dp else { if (entity->dP.x >= 0) localDp.x = 1.0f; else localDp.x = -1.0f; if (entity->dP.y >= 0) localDp.y = 1.0f; else localDp.y = -1.0f; } /* NOTE(doyle): We compare current dP with the calculated dP. In the event we want to artificially boost the asteroid, we set a higher dP on creation, which will have a higher dP than the default dP we calculate. So here we choose to keep it until it decays enough that the default dP of the asteroid is accepted. */ v2 newDp = v2_scale(localDp, world->pixelsPerMeter * 1.5f); f32 newDpSum = ABS(newDp.x) + ABS(newDp.y); f32 oldDpSum = ABS(entity->dP.x) + ABS(entity->dP.y); if (newDpSum > oldDpSum) { entity->dP = newDp; } } else if (entity->type == entitytype_bullet) { if (!math_pointInRect(world->camera, entity->pos)) { deleteEntity(world, i--); continue; } Radians rotation = DEGREES_TO_RADIANS((entity->rotation + 90.0f)); v2 localDp = V2(math_cosf(rotation), math_sinf(rotation)); entity->dP = v2_scale(localDp, world->pixelsPerMeter * 5); } /* Loop entity around world */ if (entity->pos.y >= world->worldSize.h) entity->pos.y = 0; else if (entity->pos.y < 0) entity->pos.y = world->worldSize.h; if (entity->pos.x >= world->worldSize.w) entity->pos.x = 0; else if (entity->pos.x < 0) entity->pos.x = world->worldSize.w; i32 collisionIndex = moveEntity(world, &state->transientArena, entity, i, ddP, dt, ddPSpeedInMs); v4 collideColor = {0}; if (collisionIndex != -1) { ASSERT(collisionIndex < world->entityIndex); Entity *collideEntity = &world->entityList[collisionIndex]; Entity *colliderA; Entity *colliderB; if (collideEntity->type < entity->type) { colliderA = collideEntity; colliderB = entity; } else { colliderA = entity; colliderB = collideEntity; } if (colliderA->type >= entitytype_asteroid_small && colliderA->type <= entitytype_asteroid_large) { if (colliderA->type == entitytype_asteroid_medium) { AsteroidSpec spec = {0}; spec.pos = colliderA->pos; spec.dP = v2_scale(colliderA->dP, -2.0f); addAsteroidWithSpec(world, asteroidsize_small, &spec); } else if (colliderA->type == entitytype_asteroid_large) { AsteroidSpec spec = {0}; spec.pos = colliderA->pos; spec.dP = v2_scale(colliderA->dP, -4.0f); addAsteroidWithSpec(world, asteroidsize_medium, &spec); spec.dP = v2_perpendicular(spec.dP); addAsteroidWithSpec(world, asteroidsize_small, &spec); spec.dP = v2_perpendicular(colliderA->dP); addAsteroidWithSpec(world, asteroidsize_small, &spec); } ASSERT(colliderB->type == entitytype_bullet); deleteEntity(world, collisionIndex); deleteEntity(world, i--); world->asteroidCounter--; ASSERT(world->asteroidCounter >= 0); AudioRenderer *audioRenderer = getFreeAudioRenderer(world); if (audioRenderer) { char *sound; i32 choice = rand() % 3; if (choice == 0) { sound = "bang_small"; } else if (choice == 1) { sound = "bang_medium"; } else { sound = "bang_large"; } AudioVorbis *explode = asset_getVorbis(&state->assetManager, sound); audio_playVorbis(&state->transientArena, &state->audioManager, audioRenderer, explode, 1); } continue; } } RenderFlags flags = renderflag_wireframe | renderflag_no_texture; renderer_entity(&state->renderer, &state->transientArena, world->camera, entity, V2(0, 0), 0, collideColor, flags); } for (i32 i = 0; i < world->numAudioRenderers; i++) { AudioRenderer *audioRenderer = &world->audioRenderer[i]; audio_updateAndPlay(&state->transientArena, &state->audioManager, audioRenderer); } #if 1 debug_drawUi(state, dt); debug_clearCounter(); #endif renderer_renderGroups(&state->renderer); }